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IX. The Approzimate Arithmetical Solution by IFinite Differences of Physical
Problems involving Differential Equations, with an Application to the
Stresses in a Masonry Dam.

By L. F. Ricaarpson, King's College, Cambridge.
Communicated by Dr. R. T. GLazEBROOK, [ R.S.
Received (in revised form) November 2, 1909,—Read January 13, 1910.

§ 1. InTrODUCTION.—§ 1°0. The object of this paper is to develop methods whereby
the differential equations of physics may be applied more freely than hitherto in the
approximate form of difference equations to problems concerning irregular bodies.

Though very different in method, it is in purpose a continuation of a former paper
by the author, on a  Freehand Graphic Way of Determining Stream Lines and
Equipotentials ” (¢ Phil. Mag.,” February, 1908 ; also ¢ Proc. Physical Soc., London,
vol. xxi.). And all that was there said, as to the need for new methods, may be taken
to apply here also. In brief, analytical methods are the foundation of the whole
subject, and in practice they are the most accurate when they will work, but in the
integration of partial equations, with reference to irregular-shaped boundaries, their
field of application is very limited.

Both for engineering and for many of the less exact sciences, such as blology, there
is a demand for rapid methods, easy to be understood and applicable to unusual
equations and irregular bodies. If they can be accurate, so much the better; but
1 per cent. would suffice for many purposes. It is hoped that the methods put
forward in this paper will help to supply this demand.

The equations considered in any detail are only a few of the commoner ones
occurring in physical mathematics, namely :—LAPLACE'S equation V?p = 0; the
oscillation equations (V*+%*)¢ = 0 and (V'—k*)¢ = 0; and the equation V¢ = 0.
But the methods employed are not limited to these equations.

The Number of Independent Variables.—In the examples treated in the paper this
never exceeds two. The extension to three variables is, however, perfectly obvious.
One has only to let the third variable be represented by the number of the page of a
book of tracing paper. The operators are extended quite simply, and the same
~ VOL. CCX.—A 467. 2R 2 24.5.10

[
o [E
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @% )2
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. SOR ®
Www.jstor.org


http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

308 MR. L. F. RICHARDSON : APPROXIMATE ARITHMETICAL SOLUTION

methods of successive approximation apply. But, of course, the labour would be
greatly increased.

§ 1'1. Finite differences have, in themselves, but little importance to the student of
matter and ether. They are here regarded simply as a makeshift for infinitesimals ;
and the understanding is always that we will eventually make the differences so
small that the errors due to their finite size will be less than the errors of experiment
or practical working, and may therefore be disregarded. That it is possible to make
them small enough without much labour is illustrated by examples given hereafter.

In consequence of this point of view, the notation employed for finite differences is
very similar to that for infinitesimal differences. Thus d and 9 are differential
operators, while 6 and § are the corresponding finite difference operators. The oft-

B 82 2 82

occurring symbol V? = 5t 3 +7 is represented in finite differences by [»2

The differences employed are ‘ central differences,” that is to say, they are
considered as existing at the centre of the group of co-ordinate points from which
they are derived. In this respect the notation differs from that used and defended
by Boore (¢ Calculus of Finite Differences, Art. 14), in which A", is considered to
exist at one end of the set of n+1 quantities which contribute to its value. The
differencing operator & and SHEPPARD'S* averager u are defined by

&f (x) = fe+dh)—fe=%h) . . . . . . . . (1),
W (@) = faA )+ fla=b) - L (@)

where % is the co-ordinate difference. SHEPPARD shows that pu, 8, and d combine with
one another according to the ordinary rules of algebra.

In this paper the differential coefficient d"f(x)/dx" will be approximately represented
when n is even by A7*.8"f(x) at the tabular points, and by 727" ué"f (x) half-way
between the tabular points. That is to say, these difference ratios are taken in place
of the differential coefficients, and the error caused by so doing is left for consideration
until after the difference equation has been solved. When = is odd, the symbolic
expressions given above for d" f(x)fdx" at tabular and at half-way points are simply
interchanged. The representation is closer when the averager p need not be intro-
duced. Partial differential coeflicients are represented by the difference ratios found by
performing the above operations with u and 8 for each independent variable in turn.
It will be convenient to have the representation of some of the commonest differential
coeflicients set forth explicitly.

Let ¢ be a function of « and v, and let lines be ruled on the plane xy parallel to
the axes at equal distances %, of  and Y, so as to divide the surface into a number of
equal squares each of side 7 units. Let the arithmetical value of ¢ at the centre
point of each square be written down in the square, forming a table of double entry.

* W. F. SHEPPARD, “ Central-Difference Formuls,” ¢ Proc. Lond. Math. Soc.,” vol. xxxi., p. 460.
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BY FINITE DIFFERENCES OF PHYSICAL PROBLEMS, ETC. 309

Let (01), (23), &c., for example, represent these numerical values at the co-ordinate
points © =0, y = —h; x = 2h, y= —3h, &c., reckoned from the centre of an
arbitrarily chosen square as origin. Then at any tabular point 0, 0

9 \will bo represented by pab= L {(10)-(T0)}

T oL 10)-2(00)+ (T0))

%}% ) ., ) 24’-2 2&6{(20) 2(10)+2(10)—(20)}

e o = L {(20)—4(10)+6(00)— 4(T0)+ (20)}
et R K g = 17 (1) + (T)—(11)=(1T)}
SSE e et am D= {(0)+(0)+(10)+(0T)-a(00)).

Thus 2°[7 2f is the sum of the four nearest neighbours minus four times the value
at the point considered.

84

. ot i4> . ] e x4 x4 _
Vig = ( +2 — 52707 oy ¢ will be represented by <%—561+2 e %??>d) = [P

B Sy
and [ ,'¢ = —1}9[20(00)— 8{(10)+(01)+(T0) +(0T)} +2{(11)+ (T1)+ (TT)+ (1)}

+{(20)+(02)+(20)+(02) }].
Halfway between two tabular points, say at 4, 0

)
azz will be represented by =3 {(10) (00)}.

In the centre of four tabular values, e.g., at %, ]

t\.b—l

P il be represented by de) = 35{(11)+(00)—(01)—(10)}.
ox oy hz

A point at which the difference equation obtaining throughout the body has to be
satisfied will be called a body-point. There must be enough known values of the
integral ¢ on the boundary side of any body-point to make the said difference
equation completely determinate. Thus for [7? there must be at least one layer of
points with known values of ¢ on all sides of any body-point, for [>* at least two
layers. Tt will be seen in § 4 that at re-entrant angles a point may have sufficient
known values outside it and yet not be a body-point, because the body-equation is
not to be satisfied there. A point at which the body-equation is not satisfied, but at
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310 MR. L. F. RICHARDSON : APPROXIMATE ARITHMETICAL SOLUTION

which there is a value of ¢ which enters into the system of body-equations by way. of
the boundary-conditions will be called a boundary-point.

The values of any function of position at these two classes of points will be
distinguished as body values and boundary values, or synonymously as body-numbers
and boundary-numbers. |

Problems are divided into two main classes according as the integral can or cannot
be stepped out from a part of the boundary. They are discussed in §2 and §3
respectively.

§ 1-2. Errors due to Finite Differences.—Having solved an equation using the
simple expressions of §1-1 for the differential coeflicients, it remains to enquire how
much in error the integral may be. A rule of apparently universal application is to
take smaller co-ordinate differences and repeat the integration; and, if necessary,
extrapolate in the manner explained below.

It is known® that when central differences are used, the expansions of the differential
coeflicients of a function in terms of its differences contain only alternate powers of
the co-ordinate difference . The same is true for partial differential coeflicients and
for products of differential coefficients. Consequently the error of the representation
of any differential expression by central differences is of the form A°F, (x, y, 2)
+h'Fy(z, y, 2)+ terms in higher powers of A?, where I, F,, &c., are independent of A.t

Next, as to the error of the finite-difference-integral ¢. This is the infinitesimal
integral of a differential equation having the error A*F,(x,y, z)+h'F,(x, v, 2)+, &e.
Let ¢ be the integral of the correct differential equation. Then, if we write

é(x, y, 2) = ¢ (x, y, 2) +m (, y, 2)+m*, (x, ¥, 2) + terms

in higher powers of m, it follows that a differential expression of any order and degree
for ¢ differs from the corresponding one for ¢ by

m x (a function of the differential coefficients of ¢ and of )+ terms in m?, m?, &c.,

provided only that m is independent of the co-ordinates. Now, identifying m with A2
it follows that : the errors of the integral and of any differential expressions deriwed
from it, due to using the simple central differences of § 1'1 instead of differential
coefficients, are of the form

1y (x, y, 2)+ Ry (2, y, 2)+ 05 (2, y, 2) +, &e.

Consequently, if the equation be integrated for several different values of 4,
extrapolation on the supposition that the error is of this form will give numbers very
close to the infinitesimal integral. When % is small enough the error is simply

* W. F. SHEPPARD, ¢ Central-Difference Formulw,” ¢ Proc. Lond. Math. Soc.,” vol. xxxi. (1899).

[t Note added Jomuary 21, 1910.—It is assumed that the co-ordinate axes in the tables which are
compared are parallel, for the error at a fixed point and for a fixed value of 4 may depend on the direction
of the axes.]
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proportional to A% Peculiarities present themselves on the boundary, but it is easy
to see that errors will be of the form A’f,+h'f,+, &ec., provided that in passing from
one table to another each part is either kept infinitesimally correct, or else is worked
by differences whose size in the one table bears a constant ratio to that in the other.

An extrapolation can only be made where the tabular points of the several tables
coincide with one another. It is conceivable that in the future some method
will be found of defining a continuous function in terms of the discrete body and
boundary values, so that this continuous function shall have an error of the form
*fy (%, y, 2)+ b, (x, y, 2)+, &c., everywhere. Extrapolation would then be possible
everywhere.

An excellent illustration is afforded by Lord RAYLEIGH'S account of the vibration of
a stretched string of beads (‘ Sound, vol. I., § 121). He gives the frequency of the
fundamental for the same mass per unit length concentrated in various numbers
of beads. This is reproduced below in the table. The co-ordinate difference A is
inversely as one plus the number of beads, not counting beads at the fixed ends.

Number of free beads + one . . 2 3 4 5} 10 20 40 @

Ratio of frequency to that of

continuous string . *9003 | *9549 | +9745 | 9836 | 9959 | 9990 | -9997 | unity

Error in representation of con-
0997 | -0451 | 0255 | 0164 | <0041 | <0010 | 0003 | -0000

tinuous string by string of
beads . . . . . . . .

co-ordinate difference x a
constant .

Ratio of error to square of
3988 | +4059 | -4080 | +4091 | -4107 | 4111 | -4112 | -4112

The degree of constancy of the last line shows that if we found the frequency for
one bead and for three, then extrapolation, on the assumption that the error is
proportional to 4, would give us the frequency for the continuous string to about one
part in 1000 ; which is as near as we could get by twenty beads and no extrapolation.
While extrapolation from the exact solutions for four beads and for nine would leave
an error of only one in 50,000. Other examples of extrapolation will be found in §3-1.

§ 2. Procedure when the Conditions allow the Integral to be Marched out from a
Part of the Boundary.

§2°0. Historical.—Step-by-step arithmetical methods of solving ordinary difference equations have long
been employed for the calculation of interest and annuities. Recently their application to differential
equations has been very greatly improved by the introduction of rules allied to thos¢ for approximate
quadrature. The papers referred to are :— :

Runee, “Uber die numerische Auflésung von Differentialgleichungen,” ¢ Math. Anun.,’” Bd. 46.
Leipzig, 1895. '
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312 MR. L. F. RICHARDSON: APPROXIMATE ARITHMETICAL SOLUTION

W. F. SuePPARD, “ A Method for Extending the Accuracy of Mathematical Tables,” ¢ Proc. Lond.
Math. Soc.,” XXXI.

KarL HEruN, “Neue methode zur approximativen Integration der Differentialgleichungen einer
unabhiingigen Verdnderlichen,” ¢ Zeitschrift Math. u. Phys.,” No. 45, 1900.

Witartm Kurra, “Beitrag zur ndherungsweisen Integration totaler Differentialgleichen,” ¢ Zeit-
schrift Math. u. Phys.,” No. 46, 1901.

Further RICHARD GANz, in a paper « Uber die numerische Auflssung von partiellen Differential-
gleichungen,” ¢ Zeitschrift Math. u. Phys.,” No. 48, 1903, has extended the methods of Runce, HEUN, and
KutTA to partial equations of the type considered in this section. Those of the first order he turns into

the form 9
o _ F <w 9 a—¢>
ax bl ./ ) ¢! ay J
and starting from a boundary, where ¢ is a given function of y, he expands this function as a power series

of y and integrates step by step in the z direction. The results he gives are of remarkable accuracy.
It is less accurate, but simpler, to work entirely by arithmetic in the manner illustrated in § 2* 2 below.

§2:1.% A4 semple Process and its Possibility.—For ordinary equations the necessary
and sufficient condition is that, for an #'™ order equation, the integral and all its first
n—1 differential coefficients should be given at the boundary. This is almost obvious
at first sight. The complications in the following arise entirely from having to attend
to the correct centering of the differences—an important thing in practice. Let the

equation be dr dd  d2d  dr1
4 (g 28,08 2)

dax® Y da? da!
Then if all the quantities of which f is a function are given at x = x,, we can

calculate d"¢/dx" at x). Now, representing differentials by simple central differences,
draw up a table in columns. The subscripts denote distance from a,.

% é. 8. S6. .. g, Seh,
k) : o () (8%b)o . (87 1¢b)o (8"¢)o
o+ 3h (3b)12n . (8" 1)1
To+h $n (3b)n
zo+5h (8¢)ss2m
2o+ 2h bon

Each difference is centred at values of « halfway between those for the difference
of next lower order. Then, beginning with 8"}, each difference is added to the one of
next lower order and the sum written down in the column of the lower order one, a
step & after it. This process gives a table with a diagonal boundary. The next
value of §"¢ is found from the difference equation and the process is repeated. The
difference equation is satisfied at those values ot a where the highest difference is
tabulated. These processes involve moving certain differences through a step of 3A,
at the start and when satisfying the difference equation. Except for 8" and 8" this
is done by (8"¢p), = (8"p)y+1h (8 '¢p),. Note that this is a central formula with
respect to the step —4A to +%h. For &' and 8" the motion of £/ is accomplished by

* Revised April 20, 1910
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writing algebraic symbols for the unknown values of &"¢ and &7 '¢ and finding them
from 3 8" ¢ = &"p, and from the given difference equation simultaneously. On the
other hand if any of the first (n—1) differential coefficients are unknown at x, the
summation from column to column across the table cannot be carried out, and so the
step method is impossible. The conditions for stepwise integration of partial equations
are not so simple and require investigation.

§2:2. As an example of stepwise integration, let us take the equation for diffusion
in a tube, 00’}p[ox’ = o¢fot. In the first place, if ¢ =F (x,t) is a solution of
o*p[ox* = dp[ot, then ¢ = F (ax, a’st) is a solution of the given equation. So we
need only concern ourselves with ¢*¢/ox” = 0¢[ot, and the results will apply to bodies
of any linear dimensions and any uniform diffusivity. Let us suppose the boundary
conditions are: ¢ = 0 when « = +3 for all values of £; ¢ = 1 for all values of z when
¢t = 0; in fact the familiar case of a uniformly heated slab, the faces of which are
suddenly cooled. The method of this example is so simple that it can hardly be
novel. It is introduced to show how easy it sometimes is to obtain approximate
integrals by arithmetic of equations usually treated by complex analysis. We draw
up a table with a row for each 01 of « and a column at every 0'001 of ¢. (The reason
for making the time step small will appear later, § 32'1.) The given boundary values
are next inserted.

Tasre L
0005
correct by
t = 0. 0-001. 0-002. 0-003. 0-004. 0°005. | FOURIER’S Errors.
method.
z = 05| 0-0000 0-0000 0-0000 0-0000 0-0000 0°-0000 0-0000
04| 1-0000 @ =0-9090 0-8356 0-:7714 0:7209 0-6729 0:6828 —0-0099
0-311-0000 & =0-9959 0-9834 0°-9695 0-°9492 0-:9329 0:9545 —-0-0216
0:2 | 10000 ¢=0-9998 0-9993 0-9968 0-9945 0-9887 0:9980 -0-0093
0:1]1-0000 d = 1-0000 1-0000 0-9999 0:9994 0-9990 09996 ~—0-0006
0:0 | 10000 ¢ = 1-0000 1-0000 1-0000 1-0000 0-9998 1:0000 —0:0002
—0+1]1-0000 d = 1-0000 1:0000 0-9999 0-9994 0-9990 0-9996 —0°0006

In satisfying the equation we must be careful to equate values of ¥¢p[8x* and
8p[St, which are centered at the same point. This causes a little difficulty at starting.
When ¢ = 0'001 let the values of ¢ be a, b, ¢, d, e, as indicated in Table I. Then if
the difference equation be satisfied at ¢ = 0:0005, it takes the form of 5 simultaneous
equations involving a, b, ¢, d, e. Solving these equations, we find the numbers given
in the column 2 = 0:001. Having got over this rather troublesome first step, we can
find the rest much more simply by centering all differences on the columns ¢ = 0:001,
0:002, 0003, &c., and deducing each number from the two preceding columns. The
errors resulting from the above process may be found by comparison with the Fourier

m—1

solution ¢ = = (—I)T%e‘”’g”” cos (marx). This series has been computed when
m odd

t = 0'005, and the numbers so found are given in the table. It is seen that the step
VOL. CCX.—A. 28
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314 MR. L. F. RICHARDSON : APPROXIMATE ARITHMETICAL SOLUTION

method gives a fair general view of the temperature corresponding to a given time and
position, and it can, of course, be employed with equal facility when the boundary
temperatures vary in almost any assigned manner, including cases that would be
difficult or impossible by the Fourier method.

§ 3. It frequently happens that the integral can only be determined with reference
to the boundary as « whole, as, for example, in the calculation of the electrostatic
potential at all points of a region when its value is given over the conducting
houndaries. Here the differential equation is of the second order, and the first space
rates of its integral are not given on the boundary, so that the step-method is
inapplicable. The following § 3 contains an account of two methods for solving
problems of the type indicated.

§ 3:0. The Determinate Nature of the Problem.—Let there be n body-points and
s boundary-points in the region considered. Then the differential equation, to be
satisfied in the body, is approximately represented at any body-point by an algebraic
equation connecting the body value there with the surrounding values. This algebraic
equation will be of the first, second, or higher degree, according as the differential
equation is of the first, second, or higher degree in the function of position and its
differentials. Forming this equation at every body-point, we have a system of
n simultaneous integral equations between s+n unknowns. To make the problem
determinate, the boundary conditions must therefore supply s independent relations,
involving the boundary values. The rules governing the
arrangement of these s boundary equations, so as best to Tasre IL
represent the given infinitesimal boundary conditions, have
not yet been elaborated. In certain cases a choice of ways is

open, as in the following example : Let the body equation be bl B
(0*[0x*+0*[0y?) f = p, where p is a given function of position, v e | B
and the boundary condition offon+{f = 0, where { is an s
arbitrary function of position on the boundary. Let the body 5 B

values of /" be denoted by i, ¥, ..., and the boundary values
by Bi, Bs, &c.  Then in the annexed Table II. we are at liberty to choose between
two alternative approximations. Tor we may take as values of f* on the boundary

5 (Y +By), & (Pt Ba), 3 (Yt Bs), 5 (Pt Bu)-

And as corresponding values of 8f/Sn,

Bl"lph 182—‘1129 183—\p2a B4—1P3-

So that we have one boundary condition for each 8. Or else we may suppose the
corner slightly bevelled, so that, while the above relations still hold for 8, and B,
we now have at the corner f= 1 {yn+3(B+Bs)}, Bf/8n = %(Bo+Bs)—y. Here
B.+B; enters as one variable. Also B, and B; only enter the body equations
when combined in the form B,+8;. We no longer seek to determine B, and S,
separately, but merely their average, which is the value of f* just outside the corner,


http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BY FINITE DIFFERENCES OF PHYSICAL PROBLEMS, ETC. 315

so that there is still one boundary equation for each boundary variable which we seek
to determine separately. We have just considered a blunted angle of 90 degrees. By
examining the remaining five angles possible with two co-ordinates, namely, 45, 135,
225, 270, 315 degrees, one may convince oneself that with a closed boundary it is
always possible to arrange to have just as many boundary equations as boundary
unknowns. It is in some cases necessary to suppose the corner slightly bevelled
and to replace certain (B8)'s by their averages. The representation of the boundary
condition when both 7 and 9f/on are given at each point will be considered in the
theory of the dam.

When the infinitesimal boundary conditions are such as to make the problem
determinate, it will be assumed that we can, and therefore do, represent them by a
set of boundary equations equal in number to the boundary unknowns. If any case
be discovered in which this is impossible, it will be an exception to the rest of § 3.

§8°1. The finite difference problem being thus made determinate the most direct
way of finding the integral is to solve the n+s simultancous algebraic equations for
the n body and s boundary values of the wntegral. To take an example :—At
one pair of opposite
edges of a square ¢ = 1, Tasue IIL
at the other pair ¢ = 0. edgo

Inside 05 1 1 1 1 «—  of
square.

*pfox*+ P[0y’ = 0

everywhere. Find ¢ in- 0 05 a b ¢ b
side the square.

Now by symmetry
the values of ¢ on the
diagonals will be every-
where 0°5. In fact, we
need only consider § of
the areaof the square ;
all the rest follows
from it. Taking finite

centre of
differences, Table III. 0 05
is drawn up with the square.
given boundary and A
diagonal numbers in edge

their proper places and of square.

a, b, ¢, d, e, f for the
unknown body values. Now as the finite difference expression for V¢ given in § 11
has to vanish at all body-points, we have a relation between each of the letters
a to f and its four nearest neighbours.

282
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The solution of these six simultaneous equations was accomplished in an hour and
gave the following results :—

- e a’_ _— b - r ) e _f
By finite differences . . . . . .| 0°693 0772 — 07">794” 0601 0-6324 ~(;' 533 ‘
By infinitesimals . . . . . . .| 0°-700 0-717 0'79784“ “ 0604 0-6354 0‘5;3;

‘;1;;;(;;;0_;1;;;é;fferer;ces 0-007 Al 0-005 ~0~~004 0-003 4770'003 0-001

The numbers for infinitesimal differences were obtained from

¢ = % y Odd(—— 1)@71 771-?, sech % cos m cosh mz,
the separate terms of which satisfy V¢ = 0 at all points, and ¢ = 0 when « = +4m,
and by their addition make ¢ = 1 when z = +4#. Adding up the series at these six
points took 3 hours. It is seen that the greatest error is 14 per cent. of the range of
potential between the side and diagonal. ,

Further, if we take co-ordinate differences of twice this size, leaving only one
unknown in the same position in the square as e here occupies, its value is easily found
to be 0°6250. Extrapolating as in § 1'2 we find for infinitesimal differences at this
point ¢ = 0'6324+%(0°6324—0°6250) = 0'6348, and this is only 5th per cent. in
error. To correct the other values we should have to halve the co-ordinate difference
instead of doubling it, and this would require much more work.

As a second example of the use of simultaneous integral equations, let us take the
determination of the gravest period of vibration of a thin square plate with edges
clamped n o plane. It is known (Love's ¢ Elasticity,” ed. 1906, p. 469) that the
displacement normal to the plate is of the form W cos (pt+e), and W satisfies the

4 4
equation <§f‘ + 2(’%%}?
the elastic constants, the thickness and the density. Now let us form a table such
as (IV.) to represent W. In this table W is measured from the plane of the clamped
boundary. The differential equation, when turned into finite differences, becomes a set
of simultaneous equations, connecting each in turn of the unknown body values ¢, », s, ¢
with its twelve nearest neighbours. As the boundary numbers are all zero there are
no constant terms in these equations, and they are only consistent when the
determinant of the coefficients of ¢, #, s, ¢ vanishes. There are a number of values
of ¢* which cause the determinant to vanish, and of these the smallest is that

4
+ %) W = V*W = ¢*'W, where ¢* is given as a function of p,
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belonging to the gravest mode of vibration. Let W, = f (x, y) be the appropriate
integral for a square of unit side. Then Wy, = f(x/L, y/L) will bear a similar relation
to a square of side L and to a new constant C.*. Then C.* = Viw, _ L VeW, G
W, L*W, Lv
so that L*Cy* is independent of the length of side of the square. It will be interesting
to notice how this constant con-

)
A

Py
A \

/
S

verges towards a limit as the TapLe IV.
number of co-ordinate differences 0
in the side of the square is N
increased. o, 0 N\
The configuration chosen was // \\
one in which the sides of the o0 7 NG
square are at 45 degrees to the // \\
rows and columns of the table. 0,0 s ¢ 5 NG
This gives a sharper boundary // \\
than the parallel arrangement. ° N\ ° ! ! : ‘ 1 C s
The symmetry of the gravest mode \\ //
reduces the number of unknowns. TN ’ t ’ © S0
As well as the arrangement in \(‘)\_ , ( , /0/
Table IV., two smaller ones were \\ . /s
also considered, namely, those AN /O/
formed by cutting off in turn N //
its first and second outer layers. ,
C* was calculated in each case
from the determinant, by approximation where necessary.
Collected results :—
Side of square = L. Cyt for the gravest mode. L4CA
13 2 20+0000 4050000%
21 2 63058 98528
3% .2 ©1-88843 1133‘53‘

THE ROYAL
SOCIETY

PHILOSOPHICAL
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We may attempt a closer approximation by assuming that the error in C* is
inversely as the square of the number of co-ordinate differences in the side of the
square, in accordance with §12. From the lst and 2nd values extrapolation gives
LGt = 131169. And from the 2nd and 3rd L*C.* = 1287:96. Or, if we assume
that the error is of the form e,i’+e,h* and extrapolate from L*C,* for the three values
of h, we find L*Cy'= 1282'62. The way in which the values of L*C.* converge

* Revised figures, March, 1910.
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indicates that this last one can hardly be more than 1 in 1000 in error. The precise
analytical theory of the vibrations of a square plate with clamped edges does not
appear to be given anywhere, but we may obtain an upper limit to L'‘C.* by the
method in RayreieH’s “ Sound,” § 89.  Assuming W = (¢®—2%)* (h?— )% * we have

O [ [ oW dedy [ [ Wedndy = (31:5000) (a~*b7)+(18:0000) ()

when @ = b this becomes 1296°0/(2a)*, which is greater than 1283/(2a)* obtained by
finite differences.

§ 8:2. Successiwe Approximation to the Integrals.—Having illustrated the use of
simultaneous integral equations, let us pass on to methods which have this property
in common : that starting from a table of numbers, correct at the boundary, but
otherwise merely as near as one can guess, one proceeds by definite methods to
modify this table and thereby to cause it to approach without limit towards the true
finite-difference integral.

Conditions.—The following methods of approximation have up to the present
been applied only to a limited class of equations satisfying the conditions given
below.

Let f be an arbitrary function of position having n body values ¥, ¥, ..., ¥, and s
boundary values B, Bs/ ..., B Let the differential equation to be solved be D¢ = 0,
where ® is a differential operator, together with such boundary conditions as
make the problem determinate. Let © be approximately represented by the finite
difference operator @', so that the body equations are

Dy =0, D=0, ..., D=0 . . . . . . (1)

Then in order that the following justification of the approximation method may apply,
it will be shown in the Appendix that © and the boundary-equations must be linear ;
and the body- and boundary-equations must be the condition that a certain positive
homogeneous quadratic function V of s, ¥, ..., P, is a complete minimum. Also
/> though otherwise arbitrary, is limited on the boundary to be the difference of two
functions of position both of which satisfy the said boundary-conditions. Under

k=n
these circumstances f can be expressed in the form f= 3 AP, where P, is an
k=1

integral of (+®'—N?)¢ = 0, which satisfies the same boundary-conditions as f,
N being a positive constant, the sign before ®" being the same as that of y in
Y. The proof of this fact and of various other properties of the (P)s will be
deferred to the Appendix. The (P)’s may be called the principal or normal modes
of vibration of the system. V is analogous to potential energy. Some of the

* T am indebted to Prof. A. E. H. LovE for pointing out this method and for giving me the numerical
result for a square,


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

BY FINITE DIFFERENCES OF PHYSICAL PROBLEMS, ETC. 319

commoner possible forms of © will be found in the table on p. 354. As well as the
equation ©'¢ = 0, the equation T/¢p = (a given function of the co-ordinates), and
the equation (®'—\*)¢ =0 may be treated by these successive-approximation-
methods. They will be discussed in order.

§3-2'1. The Equation ®'¢p = 0.—The approximation process proceeds as follows.
Let ¢, be the correct finite-difference integral. Let ¢, be a function (that is a table
of numbers) satisfying the correct boundary-conditions, but arbitrary as to its body
values. Next calculate the body-values of ¢, by means of

(l)z = ¢1_a1—1 ®’¢1 e e e e e e e e e (1)

where «, is a number to be fixed ; and fill in such boundary-values of ¢, as will satisfy
the same boundary-conditions as ¢,. The succeeding steps are each of the form

¢7n+1 = (]Sm_a-m_l @I(bm e e e e e e e e (2)

for the body values, and by choosing the boundary values ¢,,., is made to satisfy the
correct boundary condition. These are matters of simple arithmetic. It will be
shown that by the judicious choice of «, ay, ..., a, it is possible to make ¢,., nearer to
¢, than ¢, was. For since ¥’ is linear and ®'¢p, = 0 we have from (2)

'¢m+1"'§bu=¢m“‘¢u'—“m_1®/(¢’m—¢u)- e (3)

Now it is shown in the Appendix that ¢,,—¢, may be expanded in a series of integrals of

(DAY Pe=0 . . . ()
Put | bi—b=SAP, . . . . ... ... (5)
Then by (4) D (=) = +SAND,
And therefore by (3) ¢2—</>u=2A,k< _%Pk. R ()

Proceeding in the same manner after ¢ operations we arrive at

¢t+1"‘¢u=2Ak< -—%’-‘f><1—)i‘2>< —)—f"—2>P,c. G (7)

1 %y oy

A meagure of the deviation of two functions from one another which is used in the -
theory of Least Squares is the sum of the weighted squares of their differences. On
the same principle let us measure the error of biir by

Et+12 = S (¢t+1——¢u)2>< I . . . . . . . . . (8),

where S stands for a summation over the body points and I is a certain one-signed
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function of position. (See Appendix.) Squaring both sides of (7), multiplying by I
and making the summation, we have by a property of the (P)s (see Appendix,
equations (31) and (32))

SI(¢H1—¢“)2=2A;[<1_%‘f><1_.2‘f>x...x<—Eﬂz L)

1 Oy oy

Now it has been found that by a judicious choice of a,, as, ..., a;, the quantity

——= ) (1==%)x...x(1—==2)| may be made small for all possible values of A

oy oy o
(Thus fig. 1 shows this done for a set of seven (a)’s. This graph was arrived at by
trial.) The error E,., of ¢,., may therefore be made small in comparison with that
of ¢.  This is possible because the values of \? lie in a finite range ; corresponding
to the fact that there are only a finite number of terms in the series A, P, A similar
process will not work with the infinite series of sines, Bessel functions and other
infinitesimal integrals of (D—N°) P = 0. In choosing a;, a,, ..., a;, a diagram of the
kind shown in figs. 1 and 2 is a great help. In this we take for the abscissa a

variable A* which takes in turn the values M2 N7, ..., \,% and as ordinate we consider

n o

w=<1—-§><1—£>x...x<l——§>. o)

The value of » at \* = \,? is the ratio of the amplitude of the vibration P; in the final
approximation ¢,,, to its amplitude in the initial guess. The individual factors
(1—M\*/a,) in o represent straight lines, all cutting the vertical axis at = 1 and the
horizontal axis at the points M = «,, a,, ..., ;. By bringing any adjacent pair «, and
a,., closer together the values of o corresponding to the range of \* between a, and
a,.; are diminished, provided that the other (a)'s remain fixed. It follows that by
judiciously spacing the (a)’s along the horizontal axis and by taking a sufficient
number of such points (that is of approximations) the successive maxima and minima
of @ can be made all less, in absolute value, than any finite quantity e however small.
When this is done S (¢r41—¢,)? I being equal by (9) to A, e, where w, is the value of
o at \* = N’ must be less than €2A,%  That is to say, the ratio of the error of the last
approximation ¢, to that of the initial guess ¢, being {SI (psr1—hu)*/ST (1—¢.)*}",
is less than ¢, and e can be made very small.

A knowledge of N2 A2 ..., \,2is not necessary, but it is necessary to know the
limits within which they range, or limits enclosing these. For the lower limit we
require an estimate of \,%, which in the dynamical application is the square of the
frequency of the gravest mode of vibration multiplied by a constant depending on
density and elasticity. It is usually sufficiently close to take some boundary such as
a rectangle or a sector of a circle, for which the frequency is known, and which fits in
a rough way the irregular boundary under consideration.
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Next, to find the upper limit, it is always possible to proceed as follows :—Make a
guess at A,P,, that is to say, write down as sharply oscillatory a set of numbers as
possible for the body values, such for example as Table V.
when extended to fill the region, and add to it such boundary Tasre V.
values as will satisfy the boundary equations. Call this guess

xi- Then x, = A, P,+A,P,_.+, &. Now operate on x, * ! !
with ©' many times in succession, and after each operation .,
readjust the boundary values so as to satisfy the boundary

equations. By this process the coefficient of P, is increased — ,;  _;

relatively to the coefficients of the other (P)s in the

expansion of the resulting table, because \,” is the greatest of the N So that the
table approaches a multiple of P,. From P, it is easy to find . In any case a
rough approximation to A,? suffices.

When the boundary values B,...[B3, vanish this labour is unnecessary, for then A,
cannot exceed (see Appendix) the greatest value of A\* pertaining to an integral of
(+D' =\ ¢ = 0 with the given size of co-ordinate differences, and with ¢ vanishing at
infinity ; and this value of A\* depends only on the form of ©’, and may be calculated
once for all. It will be denoted by A%, Thus when ®" = 8*/8x°+8*/8y* considerations
of symmetry show that the most oscillatory integral is Table V. extended similarly
in all directions, and from this we find \;* = 4/(8x)*+ 4/(Sy)".

Having thus found limits between which N2 M\? ..., \,*> must lie, it remains to
choose the (a)'s so as to make w small for all value of \* in this range. In practice
this has been done by drawing the graph of o for arbitrary («)s and altering them
or adding new ones until the maxima and minima of the curve were all sufficiently
small. Figs. 1 and 2 are graphs of o, representing two approximation processes
requiring equal amounts of arithmetical labour. In fig. 1 the (a)s are distributed
over a wide range.* In fig. 2 all seven («)'s are made equal to \;>. The curves show
that these distributed («)s reduce the amplitudes corresponding to a wide range
of N to less than one-tenth of their original value. On the other hand the (2)’s
concentrated at \;* reduce the amplitudes in the neighbourhood of \;* much more
perfectly, but leave the (P)s of graver period less affected. The allowable type
of curve for o will depend on what is to be done with the integral of ®'¢ = 0 when
obtained. If its space-rates are required it is more important to abolish the modes
of vibration having the largest values of A* than it would be if volume integrals alone
were needed.

When the ratio of \?/\;? is large, as in large tables, it is difficult to remove P, by
the processes indicated by figs. 1 and 2. For example if D = 8/8x>+% 87,
and if the boundary is a square of ten co-ordinate differences side, on which
¢ vanishes, then the (P)s having the lowest values of N will not differ greatly

* The advantage of distributing the (a)’s fairly uniformly was pointed out to me by Prof.
A, E. H. Lovz. :

VOL. CCX.—A., 2T
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from cos (ygmmx) . cos (Yonmy), and for these N = (m*+n?) ;557 So that the
ratios of A% A7, &c., to A, when set in order of size will run 0-0247, 0:0617, 0-0987,
0-1234, &c., up to nearly unity. Referring to fig. 1 it is seen that the seven
approximations would reduce the amplitudes of P, P, &c., in the ratios +0°48,
+0°07, —0°065, —0°08, &c., the rest never exceeding iy and averaging about +-%;.
Of course continued approximation would gradually reduce the amplitude of P, but

+10
Fic.l. Sevew Arrroximarions
e +05 DISTRIBUTED.
=
;;’}
= 0 As Xg A
£
b
g
8 A6
= o -/T\'z“ 02 03 0-4 0-5 06 o7 0-8 0-9 10
=] L
o0
(o)
Q
E FIG.C. SEVEN APPROXIMATIONS
+0-5 Wi & =/\f_
0

Curves illustrating the process of approximation,

in cases like these it may be well to make a guess at the form of P, to estimate
M’ as in Appendix, equation (33), to find an approximation to the amplitude A, in
$1—, = AP by the Fourier method (see Appendix, equations (29) and (22)), and
so to remove the greater part of the first term of the series before the approximations
are begun. This has been done in the problem of the dam, § 4.

We have so far supposed A%, A%, ..., \,” unknown. If any one)\;? of these be known,
then making a = \;* will entirely remove P, from the series. ~This process may
sometimes be useful for removing the gravest modes of vibration P,, Py, &c.

Since the value of o is independent of the order in which its factors are multiplied
together, it follows that the result of ¢,.; of a series of operations of the type
G = Pnta,t D¢, depends on the initial guess ¢, and on the values of the (a)’s,
but not on the order in which the (a)s are taken. The application of this result
to practice is slightly limited because the number of significant figures retained
is necessarily limited.

In carrying out an approximation-process with a set of («)'s designed to make
w small, it is frequently only at the last stage that the predicted improvement
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appears in the table. The intermediate stages may be wildly irregular if the values
of o decided upon are used in ascending order of magnitude. If, on the contrary,
the descending order is pursued the table tends to improve more regularly.

§8-22. The Equation ®'¢p = p, where p is a completely known Function of
Position —This can be treated in the same way as D'¢p = 0, except that the
approximations must now be of the form

¢m+1 = ¢m_am_1 ®/¢1;L-P L R T (1)9

for, since ®'$, = p, this may be written

buir— by = b= D (Po—b) . . . . . . . (2),

which is the same as (3) of §32°1.
§ 3-2'3. The equation
@-MP=0 . . . . . . . (D,

together with s homogeneous boundary equations such as

Bi = filn+fihat oot S - o . oo (2),

where B, ... B, are the boundary values, v, ..., the body values and the (f)’s are
given numbers. P is now written in place of ¢, because by (4) of §3-2'1 P is defined
as satisfying equation (1) of this section. We will suppose that both P and N\ have
to be determined. As equations (2) contain no terms independent of the (y)’s, it
follows that when these expressions for the (B)’s are substituted in the body-equations
the latter become homogeneous, and are only consistent for the particular values of
\* which we have already denoted by N2 M7 ...\, Further, on account of this
homogeneity, any multiple of an integral satisfies the correct boundary conditions.
Such a possibility does not arise with ©'¢ = 0, for as D’ contains no adjustable
constant such as A’ it has no integral save ¢ = 0, unless the boundary equations
contain a term f}, independent of the (¢;)’'s. And if they do contain such a term, any
multiple of an integral fails to satisfy them. Thus, in the theory of membranes, if we
put D = &*/0x’+*[0y?, and ¢ for the small displacement of the membrane from a
fixed plane, then in the case of the membrane at rest ®'¢ = 0, and ¢ is commonly
given at the boundary, its values there being fi, faoy -+ fio-

On the other hand, for the vibrations of the membrane (©'+\?) ¢ = 0 the boundary
condition is commonly ¢ = 0, corresponding to the vanishing of all the (f)s.

To return to the general form of ©': let P, be the integral desired ; (Py);, (Pr)s, - ..
(Px)i+: the initial guess and successive approximations to P,. The fact that any
multiple of an integral is itself an integral allows us to put for the body-points of

(Pk)m+1
(Pinsr =y (P)u—a™ @l(Pk)m Coe e e e (3),
2T 2 .
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which is more general than (2) of §3-2'1 by reason of the factor y. The boundary
values of (P,),, are filled in so as to satisfy the boundary equations. Now (Py),
can be imagined as expanded in the unknown series

Pow=SBP, . . . . . . . . .. (4

On the diagram of w and \* (see fig. 3) equation (3) means that the straight line

+

[

Ratio of amplitudes, .

Fig. 3.

representing a single process of approximation may now be drawn in any way instead
of having to pass through o = 1, \* = 0.

By suitably choosing lines all of which pass through o = 1, \* = /%, we can reduce
the amplitudes of every P in the series except that of Py, which is left unaltered.
See, for example, fig. 3, where N, has been given the particular value #\;%. To choose
these lines we must know )\ at any rate approximately. For the first step an
approximation to N2 is therefore calculated from (P;), in the way described in the
Appendix equation (33). Denote it by (M?),. TFor the succeeding steps (N, &e.,
are calculated similarly from (P,), &e. By Appendix equation (33) the errors in A*
are reduced more rapidly than those of P. The success of the method will depend
on the original guess (P;);, when expanded as SA;P;, being free from (P)s having N’
nearly equal to N2

§ 3:2:4. Error in the Integral Due to Incomplete Approximation.—A general guide
here is the approximation process itself. If, for example, this has been such as to
diminish the amplitudes of all the P’s to less than % of their former values, and if,
for all that, ¢ has not changed by nine times the permissible error, we may conclude
that the process has been carried far enough.*

* April, 1910.—This is probable but mnot certain. Thus if 99 sin z + 100 sin (32) becomes
9 sin 2 4+ 10 sin (3:1‘) the valug at 2 = an- does not Qhange but it is not therefore zero,
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Again, from the size and distribution of ®'¢ combined with a knowledge of various
integrals of D'¢ = f(x, y), a rough estimate of the errors in ¢ can frequently be made.
Again for certain equations® the method of contour integration applied to a circle
affords a check on the value of ¢ at its centre. This method is very rapid, and it is
particularly advantageous when applied to a circle enclosing many body values, for
then a repetition of the approximation process would be correspondingly tedious.

§ 8:2°5. Routine of Approximation.— Time and Cost.—To anyone setting out on a
problem I offer the following experience as a guide in forming estimates :—It was
found convenient to enter certain stages on a table with

large squares, each divided into compartments. Thus for Tasrs.
B b TP . .
— +2 I+ @; = 0, one of the squares is shown in P B 2y B 4

ot BxSy?
the annexed table. All the quantities in it refer to the
central point of the square. The intermediate stages are
done on rough paper and thrown away. So far I have

b2 D 2y P 44

(l)g &e.

paid piece rates for the operation &,°+%,” of about Ing

pence per co-ordinate point, n being the number of digits. The chief trouble to the
computers has been the intermixture of plus and minus signs. As to the rate of
working, one of the quickest boys averaged 2,000 operations 8°-+%,* per week, for
numbers of three digits, those done wrong being discounted.

§8:3. Relative Merits of Simultaneous Equations and of Successive Approxs-
mation.—The method of simultaneous equations may be applied to differential
equations of any order and degree. It gives results which are exact for finite
differences. It is necessary in discussions as to the existence and properties of the
integrals of difference equations. But for actually calculating the integrals the
labour becomes very great as the number of unknowns increases, and is of a sort
which a clerk will not easily do. Large numbers of digits have to be dealt with, and
a single mistake generally throws the result altogether out.

The successive approximation methods of § 8:2 have only been applied to a limited
class of linear equations. The results are not exact even for finite differences. But
the bulk of the work can be done by clerks who need not understand algebra or
caleculus. Small and infrequent mistakes, or taking only a small number of digits, do
not prevent one arriving at a fairly correct result. Nevertheless, it has been found
‘best to have everything worked in duplicate.

The method of successive approximation to the surface z = ¢, = f(«, ¥) reminds
one of the manufacture of plane metallic surfaces. The initial form of the surface is
arbitrary in both cases. The essential things in both cases are a method of testing
the work at any stage, a tool with which to alter the surface and judgment in using
it. Methods of testing the arithmetic have been described in §3:2'4 above. Our

* These include V2 = 0, Vi*p = 0, See a paper by Boaea1o, ‘ Jahrh. Fortschritte Math.,” 1900, p. 740.
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tools @1 = Pp—a, ' D¢, and the Fourier method of removing principal modes of
vibration may be compared to automatic grinding machines. The use of the hand-
scraping tool corresponds to the adjustment of the numbers according to the
judgment of the operator. This is always permissible.

§ 8'4. The treatment of ¢nfinity may be illustrated by the following hypothetical
example :—Suppose we were to set out to determine the field due to a rotating mass
of gravitating fluid of known shape, the gravitational potential would have to vanish
at infinity. But to be determinable by the methods of §3 the potential would have
to be given over some boundary which could be included in the sheet of paper upon
which its values were written. We might, for example, assume the potential at the
edge of the paper equal to that due to the given mass of the liquid concentrated at
its given centre of gravity, and find the figure of equilibrium on this hypothesis.
(See treatment of base of dam in § 4.)

§ 4. The problem of the determination of the stresses in a masonry dam has been
chosen as a final example for two reasons: (1) Its practical interest arising out of the
great expense and productiveness of these structures and the destruction of life and
property should they burst; (2) Its simplicity in that we have to determine a single
quantity y as a function of two co-ordinates only.

The methods developed are suitable for finding the stresses, not in dams only, but
in a prism or cylinder of any section, acted upon by any distribution of surface stress
which is normal to the axis of the prism, when the surface stress is given, provided
that the shifts parallel to the axis are zero. §4°1 is devoted to theorems relating to
any shape of contour. In § 42 the special contour of the dam is introduced.

The discussion that follows is founded upon two papers in the Drapers’ Company
Research Memoirs (Dulau and Co.) :

(1) “On some Disregarded Points in the Stability of Masonry Dams,” by L. W. ATCHERLEY and
KArL PeARrSoN, F.R.S., 1904.

(2) “An Experimental Study of the Stresses in Masonry Dams,” by KArr PEARsox, F.R.S., and
A. F. CaMPBELL POLLARD, assisted by C. W. WHEEN and L. F. RicHARDSON, 1907,

I also owe some ideas, e.g., the use of equipollent loads in the base, to suggestions
thrown out by Prof. PEARSON in the course of conversation. In these papers the dam
is regarded as a prismatic-shaped body of indefinite length, so that the problem may
be discussed in terms of two co-ordinates z and z lying in the vertical cross-section
of the prism. The sluices are ignored—a serious omission.

§4:1'1. Prof. Prarson and his collaborators lay much emphasis upon our ignorance
as to the real conditions at the base of the dam and the consequent inapplicability of
analysis based upon special assumptions at the base, such as linear, parabolic, or
quartic distribution of shear. Admitting this ignorance, there seems to me one
assumption more reasonable than any of the others, namely, that the dam may be
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regarded as a ridge upon the surface of a very large slab of rock which, with the
dam, forms one homogeneous isotropic elastic system; together with the further
assumption that this substratum suffered from no internal stress before the dam was
built, except, of course, that due to its own weight. The consideration of the results
that follow from these assumptions will be continued in § 4:1'9 below.

§ 4'1-2. Conventions as to Symbols.—The Z axis vertically downwards.

The X axis horizontally directed from the water towards the tail.

0, the angle which a line makes with the Z axis, to be reckoned positive when the
rotation is from the Z axis to the X axis through 270° and so onwards.

The stresses zz and ;z\positive when they pull adjacent portions of the material

together, and therefore the shear w2 positive when the lower portion is pulling the
upper towards the tail.

q and s distances along the outwardly directed normal to the masonry and rock
and along the boundary drawn to the right of it.

N and T the normal and tangential stresses on the surface related to ¢ and s in the

same way that 2z and 7z are related to z and .

[ and n the cosines of the angles which the outwardly drawn normal makes with
the X and Z axes respectively.

§ 4:1°3. Position of the Origin.—PEARsON and PoLLARD (p. 37) take this at the join
of the front and the top. It will be more convenient in what follows to take it
vertically below this point at the level of the surface of our hypothetical slab of bed
rock. This is done throughout. The water surface stands at z= —p, and the
pressure due to it is accordingly gp’ (+p+2), where p’ is the density of the water.

§ 4'1°4. Specific Constants of the Masonry and Rock.—Following Prarson and
Porrarp I take the density p = 225 times that of water (p. 29) and Porsson’s ratio
n as 1 (p. 33).

§4:1'5. Umits.—Distances are reckoned in metres. Forces in metric tons, each
equal to the weight of a cubic metre of water. Consequently gp’ the weight of unit
volume of water is equal to unity. And gp = 2-25.

§ 4°1°6. Equations to be Solved.—The stresses may be expressed in terms of a single
scalar x which satisfies

4, — 34_ 84 a4> =0
VIX—<am4+2W+§ZZ X_O . . . . . . . (1)
thus
P 82 — 82 _ 82
me e w=gl m=—gl - (2000.0)

2 2
—e(p+z)=——al—+<a—>g—gpz>e. R £))
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under the water. On the air surface the left-hand sides of these are zero. Here € is
the tangent of the angle which the surface, drawn to the right, makes with the
Z axis.

We shall require the surface stresses in terms of the space-rates of y along the arc
and normal. The theory of stress functions is fully discussed by Mr. J. H. MicurLL
in ‘Proc. London Math. Soc., Vol. XXI.; on p. 110 we find the required trans-
formation, which expressed in our notation reads as follows :—

N_éx_lﬁx T___afx__lﬁx_.
T R "7 99 R as

These equations refer to a weightless solid, hence the suffix. To complete them

we must add the stress 7z = — 9p2, 2w = 0 = 22 after transforming it to components
about the normal and arc. This gives

N = 9Xx_ lal—n@pz — ___8_2X__ 1 §X+lngpz .. (6),(7).

§4'17. The Size of the Dam.—Suppose we have determined y for a dam of a
particular shape filled to a certain fraction of its height with water. Let us say
xi = f (@ 2). |

We wish to find the stresses in a dam b times as big every way and containing
b times the height of water. Try x, =f(x/b, 2/b). Then 0*,fox, 9°y,[d2*, and
0*sfox 0z would all be 1/b° times their former values at corresponding points of the
surface, but the constant terms in the surface conditions, due to the water pressure
and weight of masonry, are now b times their former values at corresponding points.
Consequently 0 f(x/b, 2/b) is the form of y appropriate to a dam b times the size of
the one for which f(x,y) was determined, and the stresses in the former will be
everywhere b times as great. For convenience in calculating, we will suppose that
the co-ordinate difference, 8z = 82, is equal to the unit of length, unless otherwise
stated. The result can afterwards be applied to a dam of any size.

§ 4'1-8. Simple Transformation Concerning the Density p of the Masonry.—If the

reservolr be empty, and . is the integral for density p,, then /—gXG is the integral for
1

density p, for it still satisfies the body equation V* <—£ X€> = 0 and also the surface
1

equations (6) and (7), since both N and T vanish, so that the -calculation of one
integral suffices for all sizes and densities, if it be multiplied by the proper constants.

Now when the reservoir is full we may take account of any density by means of
two independent integrals. Let us calculate y. for reservoir empty and density p,
and y ; for reservoir full and density p,, then the proper stress-function for reservoir
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full and density p will be y,— Pe Xe+ pXo for, on account of linearity, the solutions of
'~ py

0? 1 oy a. _ _ .
=R % —n’gpz = Ny, = N,, = N, n turn
when added together satlsfy o X I]{ 2q —n’gpz = N;+N,+ N, Here N, is the

normal stress due to the Watex pressure of a full reservoir, and N, and N, are the
same when the reservoir is empty, that is zero. The above is the method of PEArsoN
and PoLLARD (p. 28) translated into stress-function symbolism. It shows us how to
find the stresses for a full reservoir sustained by masonry of any density by
calculating in detail two cases only.

In this paper the case of full reservoir and density 2'25 is the only one treated.

§4°1°9. Integration of Surface Equations.—We see from equations (6) and (7) that
if the shape of the boundary and the stresses upon it are given, then starting at a
point s,, and assuming initial values of x, dx/dq, and dx/[ds, we can find a double
row of values of x all round the boundary by straightforward integration. The
initial values of x, dy/9q, and Ox/ds are not significant, for they depend only on the
arbitrary function Ax+ Bz+C, which may be added to any distribution of x without
affecting the stresses. The only outstanding uncertainty is at a sharp corner where
1/R becomes infinite. Prof. PrarsoN has shown that at a sharp re-entrant corner
the stress may become infinite (‘ History of Elasticity,” vol. ii.,, § 1711). In view of
this it appeared possible that the boundary strip would be indeterminate at the
corners, and the following investigation was made to settle the question. Asitisa
question of infinity, the finite forces N ds, T ds, and —gpzdsdq in the immediate
neighbourhood of the corner may be neglected, leaving simply

Py 139 & 19
X=-Z IX = X0 .o (8),09)

Now let us suppose that the trace of the boundary on the y plane is a circle at the
corner, with the intention of making the radius indefinitely small after integration,
on integrating equations (8) and (9) with R constant it is found, after some work,
that

X = Ce Rsm< +D>+H B ¢ 10))

R

is the complete integral, C, D, and H being arbitrary constants.
Now suppose that s/R, the angle turned through, increased from 0 to . Then it
can be shown from (10) that

XY - (& @X.> ' <§2<) _<§>L> _<_a.>i ' (12
<as>a_<89) cosa+(\aq sina, ) = % cos e aSlsmoc . (1), (12).

S /o

VOL. CCX.,—A.
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It is remarkable that the changes in dx/0s and dx/dq depend on the angle turned
through, but not upon the sharpness of the corner, as is evidenced by the absence of
R from (11) and (12). These equations are the conditions that the tangent planes of
the surface x = f(x, ) just before and just after the corner shall be parallel to one
another. Thus the boundary strip of x can be integrated independently of the body
equation_ [ *y = 0.

§4'1°10. The following theorem about the total changes in dx/dx, dy/0z, and x over
any length of boundary affords a useful
check on the integration of equations (6)
and (7). Let AB be any part of the
boundary. Cut off in imagination a portion
of the solid by horizontal and vertical lines
through A and B meeting in D. It will be
assumed at first that AB does not intersect
AD, DB, except at A and B. Now apply

to AD a normal stress 7z, and to BD a normal stress iy, arranged.in amount and
distribution so as to balance the forces acting on the boundary AB, together with the
weight of the portion ABD. Let the weight be gpv acting in a line distant / from D,
and let the stresses on the real surface AB be equivalent to a force X, Z acting
through D, together with a couple G, The forces X, Z are to be reckoned positive
when they are directed out of the solid. As the body ABD is in equilibrium y,
oy /[dx, Ox[oz are single valued, and if there are no infinite stresses they will be
continuous. The changes along AB can, therefore, be obtained by integrating along

P e

= —

A
D

AD and DB. To balance the horizontal and vertical forces j- —2z du+7Z +vgpv = 0

D~ . .
and S —xxydz+X = 0, where v is +1 if AB is above AD and —1 in the reverse
B

~ 2. —_— 2.
condition. ~ Now, substituting 2z = % —gpz and = %/)g, there results
A9 A ' D
X = gpz,| w+Z+vgpy and
D

ox/0z = X. Also, since the forces on AD, DB are
» 0T B .

purely normal, dy/dz is constant along DA and 0x/ox is constant along BD. There-
fore, remembering that by (11) and (12) dx/dx, dx/oz are continuous at the corners,
we see that

B B
X = —Zitgp (m—r N X, . . (13) (14
T Z+gp (m)‘ zw) and 9 X | (131, (14,

where « is the length DA. These are the required total changes in 2y/ox and dx/dz.
Lastly, to balance the moments about D, we must have

A~ D~
j 22y (—1)) dm+j xxy (2—2) dz+ G+ plgpv = 0,
D B
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where x,, 2, are the co-ordinates of D, and where u is +1 if AB is to the left of BD,
and —1 if they are reversed. Integrate by parts, then

iw-@ e ([ oy | + ]E@-%) [ e [ 0oy |+ G g = 0

Substitute the values of the stresses and

2

= =-o(2) (2 ().

A Ox

B

where b is the length BD.  Or, since by (13’) and (14') <%§> = <§>—<) -X,
B A

__._E_)x_ix> <§f_) /
x= G a(ax)A b(azA+bX+gp WD —plo). L (19)

B

A

a useful formula.
When the boundary of the solid intersects AD, DB, as does the curly line in the

fig. 5, then draw horizontal and vertical lines to form a

figure enclosing the boundary. Apply the stresses to B L

FH instead of AD and to LK instead of BD, leaving

the rest of AFHJKLB unstressed. These stresses (

must balance the surface forces as before, and now the \

whole weight of the solid enclosed between AFJLB A NG

and the boundary. On account of the change in level

from AD to KJ or BL the term —gpz in 22 is different,
and this term being integrated along FJ and LB has
the effect of subtracting the weight of AFJLBD from
that of the solid part. Consequently we may integrate H J
along AD, DB and keep everything else as before, Fig. 5.

M

provided we replace +wvgpv by +¢gp jj(z—zo) dx, where z follows the boundary curve.
B
A
§4'1°11. In order to simplify the arithmetic, the surface of the dam of the form
chosen has been represented by straight lines, either horizontal, vertical, or sloping at
45 degrees. It is one of the peculiar advantages of successive approximation methods
that a simple case like this comes in conveniently as the first stage of the solution for
any rather different boundary.
Table of surface equations when the surfaces are horizontal, vertical, or at 45 degrees

(fig. 6), deduced from equations above :—
27U 2

Similarly in (15) we must replace ulgpv by + gpj (z—2p) (—1,) dix.
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WATER LEVEL
§=of

¥X -0
3y
Xx +N =0
o ’\
oram T T T € =+ oo
BOUNDARY CONDITIONS 7
WHEN THE SURFACES ARE HORIZONTAL , VERTICAL,OR INCLINED AT 45°
Fig. 6.

The rather complicated conditions on the sloping surfaces require special reduction
“to finite differences. Suppose the flank runs through a set of values of y as in
Table VL., then at the point ‘5, 0 o

0% [0z 0z may be taken as £{(01)+ (11)— (11)—(01)},
0% [02* as F{(11)+ (01) + (11) + (01) —2(10) —2(00)}.
Therefore the surface condition
ox , o

v X — = (01 1)— — ... 13).
o A 0 becomes 0 = (01)+ (11)—(00)—(10) (13)
TasrLe VII.
TasLe VI. B
/ 7
11 oT/// 1 2!
// 0 1
/
10/ 00 10
// 0 1 2 3 <
Surf =
// urrace
i/ 01 11 : A
L ,
7

In a similar way, at the point 0, ‘5 the second surface condition

0= g_}qu é—if?é;-z%z becomes 0 = (11)+ (10)— (01)—(00)—2%z . (14).

The conditions on the front may be transformed in a similar way if necessary.
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We proceed to show that the natural way of turning a corner in finite differences
is consistent with (11) and (12). Take, for example, the corner in Table VII.
representing the tail rising vertically from the base. On the horizontal surface

2 ’ .
z = 0, the equations Q%( =0 X = 0 are taken along the line z =0 midway

ox’ > 0x 0z ‘
between the two boundary layers. When we come to the corner we may either
continue this process and so determine b = 5, or else we may take g—x + oL, ;9 X/
2z 0%

at = +%; 2=0.

Either process leads to x = 8 at @ = —%, 2 = —%, but one fixes b while the other
leaves it arbitrary. Again we get y =1 at © = —4, 2 = —1%, either by taking
0*xfor*+0°xfoxoz = 0 at * =0,z = —%, or else by taking b =5 and 0%/[0:" = 0,
and 0*[dxdz = 0, as holding at the middle of the two columns on @ =-0. We
may expect that when b is determined by the boundary equations a sharp corner is
represented. When b is not so determined, a corner bevelled by the line x—z = 1.
In the absence of the foregoing analysis

these ways of turning the corner would Tapie VIIL
have seemed tempting but risky. But we Surface > /
shall see that they really do correspond to :

. . l/ 2
the analytical way. For, on the horizontal /
bed, we have (dx/ds), =1, (3x/dq), = —2, //
and the angle turned through is +m. 0 1 2/ 3

Therefore, from (11) and (12) 9x/ds and < Surface

0x/dq on the tail above the corner should

have the values —2 and —1 respectively.

And these are exactly what we find in the

finite difference table for the first differences.
Again, suppose the tail rises at 45 degrees to the base. Starting along the

horizontal the value xy =3 at @ = —1, 2 = — may be obtained by assuming (14) to

hold at the origin, that is to say, at the corner.

The other numbers on the sloping surface were obtained by using (13) and (14)

i §X> = <£3_2,(\ = — =1l7.
alternately, gpz being left out. Now we have <83_ ) 1, 8_(1)0 2, o« =27; so
that equations (11) and (12) give' us —0707 and —2'121, respectively, for

g—i( and QE_] on the slope just above the corner. And these aré identical with the

first differences of the table when 8s and 8¢ are given their proper values of ,/2 and
1/4/2, respectively.

§41-12. A Possible Experimental Solution.—Now that we have shown how to
integrate the boundary conditions, the analogy with thin plates will help us. For it
is known (Love’s ‘ Elasticity,” 1906, § 813) that for a thin weightless plate, originally
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plane and unacted upon by surface forces except at the edgeé, the displacement w
o*w otw o'W _ oy

8._764“'_28_902_53?4_5‘7;“—"' V,'w, the edge
conditions being such as to make the displacement purely normal to the undeformed
plane and « and y being co-ordinates in this plane. So that if a sheet of thin steel

normal to the plate satisfies the equation 0 =

“ferrotype” is taken and fixed at the edges in such a way as to make a double layer
of values of w there equal to the integral of the boundary conditions of the dam, then
the displacement w elsewhere would also be equal to the integral x of the complete
system of equations for the dam. The principal stresses in the dam are then equal
to the principal curvatures of the plate. For a method of measuring them, see two
letters to ¢ Engineering,” October 25 and November 1, 1907.

Whenever one has to solve the equation V,*y = 0, the form assumed by a piece of
postcard bent in the fingers will be worth considering. As an accurate experimental
method this would have the advantage over those of PEarsoN and of WiLson and
Gorg, that displacements are applied instead of forces, and that the resulting
displacement to be measured may be larger than theirs were.

§41°13. To return to the Conditions at the Base of the Dam.—Prof. PEARSON
pointed out to me that the effect of the stresses in the base of the dam, at a distance
where the base of the dam subtends but a small angle, will be the same as that of any
other statically equivalent system over the base, in particular to the force-at-a-point
found by compounding the pressure of the water acting through the centre of pressure
with the weight of the dam acting through its centre of gravity. We may therefore,
in imagination, remove the dam, leaving a horizontal plane with this force acting at a
certain point, the pressure of the water in front and no pressure behind. Suppose we
had the distribution of y corresponding to this system of surface forces. Then the
corresponding double set of values of x at a considerable distance from the dam
will differ exceedingly little from the true values, and if we keep them fixed and write
in the upper surface values on the dam we may adjust the numbers inside by successive
approximation to satisfy V*y = 0, and the result will then be exceedingly close to the
true integral in the neighbourhood of the dam. This is what has been done.

From the linearity of V*and of the stress equations, it follows that if the stresses
corresponding to a number of solutions of V* = 0, when added, give the true stress,
then the stresses derived from the sum of all these solutions will also be correct.
With the aim of providing distributions of y in the bedrock which shall enable
engineers to solve “ PEARSON’S Dam Problem ” for any shape of dam boundary, I have
considered the actual distribution of x in the bedrock as made up of the three
following parts, which must be added in the proper proportions as described below :—

(1.) The term ¢, = —+'ggpz* = —§2° This gives Saw = — gpz, and so combines with
the stress due to the weight of the bedrock to make s, = 0.

(ii.) In a weightless bedrock. The stress function s, due to a point force in any
direction at the origin.
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(ii.) The stress function s, in a weightless medium, when on the surface z = 0,
22 =0=72 from 2 =0 to @ = + o, and 2z = —p from =0 to © = — o.

The stretch s, is made to vanish at = + o by making Saa =2z = — p in that region.
At x = + o the stresses due to (ii.) will vanish, and therefore so will also the corre-
sponding s,. Consequently, it we add together any multiples of the (x)’s specified in (i.),
(i), and (iii.), we have s, = 0 at x = + o when the rock has its proper density p.
(ii.) is to be so placed that its origin is at the meet of the front and surface. (ii.) is
to have the point of application of the forces placed where the resultant of the water
pressure and weight of the dam cuts the plane z = 0.

Tt will be necessary to consider distributions v and i, in some detail. We are
indebted to Mr. J. H. MicHELL for both of them. (See ‘Proc. Lond. Math. Soc.,
1901.) “

First, 4. For a pownt. force of wmt magnitude acting on the straight boundary
at the origin of the polar co-ordinates =, . The stress function y is given by
Y, = —7 '@ sin ¢, and the force is in the positive direction of the line from which ¢
is measured. The stresses are as follows :-—

- Loy 2cos 5 0%y

SRR Sl

0, 775-_-._8%(% @(,;1’702):0 (19), (20), (21).

;

Next, . The Stress Function due to the Lake.-—MIcHELL shows that if unit
normal pressure be applied along a finite length of a straight boundary of an otherwise
unlimited plate in which the sideways stretch vanishes, then the form of the stress
function is

U = (=) 2m . . . ... (22),

where 7, ¢ and 1/, ¢’ are polar co-ordinates centred A and B, and AB is the initial
line. He further proves that the axes of principal stress at any point P are the
bisectors of the angle APB, and that if this angle is equal to «, the magnitudes of the
principal stresses are

—(a+ sin a)/m along the internal bisector. . . . . . (23),

—(x— sin a)/m along the external bisector. . . . . . (24).

We want the limit of " in the neighbourhood of one end B when the other end A
is removed to an infinite distance. Let the origin of our co-ordinates x, z coincide
with B. Then let A be at a very great distance x= —t, ¢/ = +2, ' =t+x,

Ui = %r {r’¢—(t+x)z}. Now remove the infinite but stressless #z and we have

¥ = {r’¢p—xz}[2m, ¢ being equal to O+4x in the notation of §4:1:2. On the upper
surface 0%/dx® = 8*f&r%. Therefore the traction 2z is equal to + /2.
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It should, of course, be negative for a pressure. Therefore we will write

N

lp3=——2—1;{r2¢—wz}=—%{(m2+z2)<0+g—)+m}. .. (25)

I have also arrived at this result by an independent method.

We must next consider the stretch s,. For on the surface a great way in front or
behind the dam one would expect s, to vanish on account of the uniformity of the
surface pressure. Now in MIcHELL'S solution for a finite loaded portion AB all the
stresses vanish at an infinite distance, and therefore the stretches also. But when A
Sww—2z

3
= ;1;—[-—1— %{20—4 cos 0 sin 0}] Here s, vanishes when 0 = —&w, that is, behind

moves off to infinity we find from (25), after differentiation, that s, =

the tail. But not when 6 = +4# in front, under the water.

§4°2. The detanled working for a particulor shape of contour.

§4:2:1. The form chosen for nvestigation is shown in fig. 7. It was the best
representation of the Assuan dam, as drawn in Pearson’s papers, which I was able

255 1340
1 1
+4x I{ 2 + 0-f =x
i | |
i
! S 5 LEVEL

t |
e e T
i
i
i
|

A/

Fig. 7. Contour chosen for investigation.

to obtain with so few as six co-ordinate differences to the height, without inter-
polation on the boundary. As a real structure it would be liable to crack at the
points opposite the re-entrant angles on the flank, somewhat as the unfortunate
Bouzey dam did, but that tendency will not affect the stresses lower down, with
reference to which PEARSON has given warning, and to which attention will here be
directed. The height, p, is 6 metres. The area of the . cross-section above the line,
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z=0, is 1825 square metres. And this, at a density of 225, gives a mass of
2981 metric tons above the rock surface per slice 1 metre thick. The centre of this
mass was found by graphical construction to be at the point @ = +1°835,% z = —2°19.
The total horizontal thrust of the water on the same slice is 180 tons. In dividing
the forces acting on the structure into lake pressure and a force-at-a-point, after the
manner of §4:1'13, I have considered the lake to extend right up to the vertical face.
This leaves a force of 0°125 ton acting upwards near the corner, due to the bevel
diminishing the depth of water just there to be included in the force at a point.

In finding the force at a point, the total horizontal thrust of the water of 18 tons
acting through a point § of the height of the dam from its top, is compounded with
the weight of 2982 tons acting through the centre of mass and with the 0:125 ton
acting upwards near the corner. The resultant of 34:74 tons strikes the base at an
angle, the tangent of which is 1°657 (= 58° 54’), at a point the co-ordinates of which
are © = +2°55, 2 = 0. If there had been a pronounced curve at the bottom of the
front it would have been necessary to use a link polygon to find the load point of the
horizontal z = 0.

§422. Taking six co-ordinate differences in the height the surface conditions were
integrated by equations (13), (14), &c. A difficulty arose at top. For the dam there
being only one co-ordinate difference thick, that is, y being expressed by three
columns of numbers only, the four boundary conditions cannot necessarily be simul-
taneously satisfied. It was avoided by making the total change in dy/ox over the
base equal to the total downward force, and by making the total change in dy/dz over
the base equal to the horizontal thrust of the water, and then integrating the boundary
strips separately from in front and behind, and making y one-valued where they met
at the top.

On the lower boundary x was made equal to the sum of the following four parts :—

(1) For the lake pressure, the values of 615, found directly from the co-ordinates
« and z. They are given in Table IX.

(i) For the force at a point 34744y, found from the factors  and # sin 6, measured
on a large sheet of scale paper. 34744y, is also given in Table IX. They may be of
use to anyone re-working the problem for a dam of a different shape.

(ii.) A linear function added to the above two in order to make the sum agree
with the values of x on the air surface behind the dam. It would have been simpler
to have altered the surface values to make them agree with the base, but I did not
think of that in time. This linear function is most conveniently specified by its first
differences, which are dy/dx = +9'735, dx[oz = —15'35, and by the fact that it
vanishes where the point-force cuts z = 0. These first differences were calculated
from the first space-rates of the expression —34'747'7rfsin 6 along and normal to
0 = —58° 54’, and were used to calculate the linear function.

(iv.) Finally, —42® was calculated and added.

* By calculation more exactly 1-340,
VOL. CCX.—A., 2 X
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The sum of these four
functions of position is given
on the lower boundary of
Table X. Its ‘lake and
point-force components have
been checked by plotting
curves and recalculating any
number which did not lie
smoothly in the series. In
this way an error of 1-0
could be detected, and
therefore probably does not
exist. The multiplications
were made with a 20-inch
Altogether I ex-
pect the ¢standard devia-
tion” of the errors in the

slide rule.

lower boundary values is
0°15 or less.

The initial body values
assumed may theoretically
be arbitrary, but of course
the approximation process
need not be so long if they
are near to the correct inte-
gral. In this case the initial
body values were made equal
to the sum of the four
functions 64, 34744y, the
linear function of (iii.) above,
and —32° in the region below

=0. The numbers were
read from graphs in a very
rough way. Above z=0
the initial body values were
simply guesses.

The preliminary stages of
approximation were full of
experimental processes which
did not completely succeed
and are not worth describing,

Here z = + 1.

+1.
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especially as the arithmetic was somewhat faulty. Let us start with the table as left
by them and call it ¢,.

Next the processes recommended in § 3-2'1 were adhered to. The table being large
it was thought best to remove P, and P, from ¢, —¢, = SA,P; by making guesses at
the form of P, and P,, calculating their coefficients A; and A; by the Fourier process
and then subtracting A,P;+A,P; from ¢,—¢,. Of course P, is defined so that
SIP;? = 1, where S denotes a summation over the body-points, whereas the guess is
an approximation to B,P;, where B is an unknown constant. For ®' = [* and for
zero boundary values of the (P)'s the general equations of the appendix give

I=1, N = V[T = S[p?(BP)T/S[BiP]-
Now ['p, = SN’AP,. Therefore S[P,.[? *p,] = Mz2A, Therefore
APr=Pp. S[Pr. [ ‘] x S [BP TS * (BiPi)F, = (BiPy). S[BiPs. 7 ¢ J/S[ [ * (BePy) -

In the right-hand side P, only appears in the combination B,P,, so when this is
known AP, can be calculated at each point. A rough check on the accuracy of the
guesses at B,P, and B,P, may be obtained by comparing the values of A* and A\,
obtained from them, namely, 018 and 2'3, with the corresponding quantities in
infinitesimals for simpler geometrical figures of the same area. The area of this
smaller dam table is 1138 square units. And for a rectangle £ as broad as long the
formula of § 31 gives N\ == 0°15, while for a circular plate clamped at the edges the
principal vibration with a single circular node has \* = 1'2 (RavreieH, ¢ Theory of
Sound,” §221a). It is possible that what

Tapre XI. has been called \,* above was really A%
Finally the table was given four approxi-
0 0 mations of the type xui1 = Xa—2 ' Xx
where o« was 10, 30, 50, and 64 in turn.
y 0 0 . These numbers were chosen because they
N . gave a good “curve of ratio of final to
\\ initial amplitude.” The result is shown in
x @ 0 \\ 0 0 Table X. From it the stresses can easily
A be calculated. The values of [y*y which

, A o o should vanish are given there also.
X ¢

§ 4:22°1. Interaction of Body and Sur-
Jace Equations. Bevelling of Re-entrant
% % % % Angle at Front.—It has been shown in
§4'1'9 above that the given stresses on

the upper surface determine a double layer of values of x covering this surface.
At almost all points of the double boundary layer it is impossible to evaluate [ *x
because one or more of the values of yx involved is lacking, so that x over the
surface must be determined by the surface condition only. The only exceptions are
near a re-entrant angle. For example, at the points where x =a or b in the
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Table XI. sufficient surrounding numbers exist to determine [¥*y completely.
We might therefore determine o and b at these points by the body equation.
But then we should be left with a boundary strip indicating a considerable
amount of bevelling. Or we may go to the other extreme, and determine y in
the chequer marked ¢ by assuming the surface equation /[8xz to hold at the
angle. I take it the boundary strip would then represent a perfectly sharp right
angle. On these grounds I suppose that the case actually studied, in which ¢ and b
are determined by the surface equations and ¢ by the body equation, represents an
angle with the slight amount of bevelling caused by joining the points © =0, z = —4,
and ¢ = —%, 2= 0. This was not realized till about the 10th approximation, when
Mr. BorcHARD pointed out some inconsistency. It was corrected along with other
errors in the boundary conditions, and all final numbers refer to the bevelled angle as
just stated.

§4:22:2. Error due to o Point-Force having been substituted for the Actual
Distribution.—We see from Table X. that the actual distribution of stress differs from
the assumed point-force in being spread out well over the base. We may form some
estimate of the order of the error involved by comparing the stresses over the lower
boundary due to a vertical point-force with the same due to a statically equivalent
pressure spread uniformly over the base. MICHELL'S stress function ;= (1r"p—1"¢')[27
enables us to do this. (See equations (22), (23), (24).) For when the point P on the
lower boundary is vertically below the centre of the stressed surface, the total force is
proportional to the stressed area, which is equal to 27 sin $o. So that if the total
force is to be constantly unity as the area alters, the stress function must be equal to
o siln ol 7'2(/);:,2(73 . By (23) and (24) the principal stresses at P are

2 2
-—2-{1—-’ % 4 terms in ot &c,}, ——];{9—+ terms in o, &c.}.

7T 4,381 ro 18!

In the limit when the force is at a point we have « = 0, and these reduce to —2/rm
and zero. In the case of a point on the lower boundary, eight units below the level of
the rock surface, the base of the dam subtends an angle of about 4%/8 radius. Then
@’f4.31= 0013 : that is to say, the errors in the stresses at the lower boundary, due
to substituting a point-force for this statically equivalent pressure, spread uniformly
over the whole width of the base, are about 2 per cent. of the greater of the two
principal stresses at the lower boundary. This uniform spreading is not, of course,
exactly what has happened in the approximation process, but it is sufficiently similar
for the question at issue (see Table X.). The correct lake stresses and the correct
upper boundary will tend to swamp this 2 per cent., which is therefore quite negligible.

§4:2:2:3. Errors due to Incomplete Approximation.—The values of [y*y given in
Table X. for the last approximation look as though they consisted chiefly of a principal
mode of vibration which had a single nodal line sloping parallel to the flank of the
dam across the middle of the table. For this mode of vibration \* will be considerably
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greater than for the gravest mode which has \* = 0°15; it will probably be as great
as unity. Then the errors in y must be roughly equal to [P*. If we imagine the
tabulated values of [y *y smoothed to eliminate all vibrations, except the one with the
single nodal line already referred to, and if we then take second differences of the
smoothed [ *y, these second differences will be the errors in the stresses. It is easy
to see that they will be less than unity.

§ 42'8. Halving the Differences.—Some notion of the error due to having so few as
41 co-ordinate differences in the base of the dam may be formed from the error in £,
found from the equation ([?*—%*)¢ = 0, for the gravest mode of a square of seven
differences to the diagonal. This i1s shown in §31 to be 13 per cent. It was
therefore thought desirable to halve the differences and reapproximate. Body values
half-way between those of the smaller table were filled in by interpolation.

Since the boundary formerly lay half-way between two sets of numbers, a set of
interpolated values now lies directly upon it, and consequently the surface conditions
resolve themselves into relations between the three outermost layers of numbers
instead of the two outermost as before.

$4:23'1. The Method of Approximation.—After some preliminary experiments,
the numbers just inside the boundary were corrected by taking x,+1= Xu—2""[ “Xn
and after each approximation the numbers just outside the boundary were corrected
so as to keep 8x[8q equal to 0x/[dq, calculated analytically. The following values of
a were taken in turn: 10, 30, 50, 64, and again 2, 5, 20, 40, 40, 50, 60. These
numbers were chosen, as all such have been, because they gave a suitable curve of
reduction of amplitudes.

§4:28'2. An analytic integration of the boundary conditions was carried out,
using equations (6), (7) together with (11), (12) at the corners, and starting from
x = 0, 0x/dq = 0, behind the tail of the dam, as in the small table. The expressions
deduced for y and &x/dq are given in a schedule. Values of x calculated from them
were set down in their places on the boundary, and the first difference across the
boundary was made equal to dy/dq. These numerical values may be seen in
Table XII. They have been carefully checked at a number of points by the theorem
about total changes given in §4°1'9, and have been found to be correct to 0-01 or
less. The exact values of x obtained from the boundary have been compared on
z = 0 with those found from the point-force and lake pressure in the bedrock—

X> Xs
. calculated strictly along calculated from
boundary. point-force assumption.
-4'5 270-30 270-20
-5-5 329987 32990

a quite satisfactory agreement.
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§ 4:23:3. Various adjustments were necessary. First, because the coarse-difference
table has on its upper boundary numbers calculated stepwise by finite differences, and
these are not quite the same as the infinitesimal values. Consequently, the infini-

26:39

|7:20 @ 26:9| @ 39-98

L ®
TasrLe XIT. 10-3¢ 1720 222852 3998 5643
. .
1097 17:20 27-00| 4015 56-54
-0-06
. .
10:82 1720 | 2730 40:5¢ 5684
+0-3% *

.The stress f'unctlon. —x for a dam 6 metres 606 10-40| 17-60 2800|4131 5754
high. Co-ordinate difference one-half. The . 002 w005 |
boundary of the solid passes through the 5.5- 5.56|10-60 13-40 2919 |42-58 5873
series of dots. The black line encloses the o |*ofr roe wer3 ) o
body region.  The small numbers are 3.55 5.86]11-02 19-59 30-87|4448 6041
___D X- ° -1’8l 40°43 -0-l6 o

4-20 5-:86|12:06 2146 3334|4713 6288
~0'0) =0'%4 +1-02 .

1425 2437 36-67[50-65 66-21
~1:25  40:77 +0°S! °

949 17-63 2823 40-95|55:17 7049
#1407 w0z so03 [

1233 21-36 33- OO 46:28 ] 60-81 75-82
-0:37 +0-53 ~-1-77 +0-25 | .
[ J

1122 442 9:84 17-50 27-21 3902 5277|6771 §2:90 99-34
+0'50 =020 =037 +40:45 -0-33 -0'43 +0-03

7-08
+1-23

0-90

0:65 0:35 093

0:97 3-67 Z-22 14830 2337 3383 4617 6028 75-59]91-550103-640127-24@14733@
~0:26 +0°17 ~-0-56 +0:39 +0:2 4014 -097 -0:-09 +0-70

® 0-:00@ 0-:00® 0-00® 0:00@® 0-00

047 0:57| 0-65 Q0:35 |-67 3-34 7-78 13:52 2103 3044 41-57 5443 6875 3425 100-53 117-834|136:57 15669
+0:10 =-0'67 +0-09 -0:3¢ -~0°05 03 =069 -0-12 -0'58 +0'64+ =-0°'19 +0'§9 -0-52 -0'32

2:25 2:57) 2-96 3-65 5-28 J-50 13-46 2013 2856 371 50-38 6355 78-07 93-70 110-23 1R7-57|146:13 16673

+0'46 ~0'52 ~I'I1T -032 +0'I18 -0'44 +0°083 4069 +0°19 -0:25 +0'37 +0:08 41428 40415

9:19 5-98] 6:91 8-35 10-85 14-98 2068 2811 37-22 47-93 60-07 73-53 B&16 10391 120-62 138:28|157:26 177:59

40013 =012 -1°21 +0:57 ~0:4l .+0:ll -00l =00+ -0°15 $0-32 ~0'36 +0°27 +0-62 *0'13

9-58 10-36| 12:47 14-77 1813 22:95 2929 37-31 4696 5814 70-67 ¥4-35 9912 1149313173 149-56)163-49 189-28
~0°I3 =087 +0-53 +0'!5 4002 -0°27 0-00 +0'!14 +070 +0'2% 4023 =-0'23 -0-33 ~0-09

1724 19-62]22-83 2671 32:19 39-08 47:66 57-7] 6926 3208 96 OI 110-98 126-99 143-951162:11 181-22
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tesimally correct upper boundary of the fine-difference table did not at first fit the

lower part derived from the coarse-difference table. A correction to the coarse-
difference table was therefore calculated, which, if added to it, would have made its
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upper boundary infinitesimally correct as regards y, when the value of y was found
by interpolation® (dx/dq appeared to be near enough already). And this correction
was used to bring the lower boundary of the fine-difference table into harmony with its
upper boundary. Its greatest value in the region of the fine-difference table was 1°5.
Secondly, a principal mode of vibration, having maximum value 05 and A?, roughly
15, was left in the top of the dam not completely removed by the approximation
with a = 2. It was removed by guesswork satistactorily. Zhurdly, a number of
slips in the arithmetic had to be corrected. The result of these processes is shown
in Table XTI. 4

§4:23'4. Errors Due to Incomplete Approximation.—As a justification of the
body values of Table XIL, I propose to consider the final distribution of [ *y
belonging to them, and not the process by which they were obtained, for owing
to errors and experiments this process was long and complicated. Let us imagine
the distribution of [»*y given in Table XII., to be expanded in the series
e = ANP +HANP + o+ +ANP,, where P, is an  integral of
151" —N) P = 0, and has P, = 0 and 8P;f8 (normal) = 0 on the boundary. Then
the error in y is AP;+A,P,+...+A,P,. An inspection of [»,*y shows that it changes
sign many times in a small area. Hence it obviously contains the principal modes of
vibration for which M is large. The greatest value, namely, N, is about 64, so for
this the error in y will be ¢4 of 5[ *x. The greatest value of 5[ *y is seen to be
1-81, corresponding to an error of 0°03 in y. If this had been distributed all over
with alternate + and — signs the corresponding error in the stresses would be
(4x0°03)/h* = 16 x 003 = 048. This is appreciable, but not serious. The mean
value of %[ ,*, formed by squaring, adding, and taking the square root, would be
much smaller than 1-81, and the error in the stresses due to the presence of the
higher modes of vibration P,, P,_,, P,_,, &ec., will be correspbndingly less than 0-48.

Next, as to the gravest mode P,: it is possible that P, may be prominent in the
error in x, and yet AP, obscured in [?,* by the presence of \,’P,, since \,? is a small
fraction of N, We can estimate it very roughly by means of the theorem that at
the centre of a circle an arbitrary function f differs from an integral y of V*y = 0,
which coincides with it, as to value and normal space rate, everywhere on the
circumference, by the integral over the interior of the circle of the product

o ] vl 1-(5]] = e

where @ is the radius of the circle. The integration has been effected with sufficient
accuracy by drawing contours of B on tracing paper and laying it over Table XIL.,
and then adding up the values of [¥,*y situated between each pair of contours.

* The internal distribution of this correction was caleulated by contour integration applied to freehand
graphs in a way which the author hopes to publish shortly.

VOL. CCX.—A, 2y
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The following results have been found :—

Co-ordinates of centre of circle.
Radius. P.* Q.t

2. 2.
+2 +1 2-25 +0-24 +0-09
+2 +1 15 +0°-03 +0-03
+4°5 +15 15 ~0-43 ~0-38

0 +15 15 +0-21 -0-19
+15 -1-0 15 -0-05 -0-04
+0°5 +0°5 10 +0°027 | +0°05
+4 +1 1:0 -0-110 -0-22
+3 0 1-0 -0-015 -0-03
+1°5 0 1-0 ~0-054 -0-09

* P is the excess at the centre of the tabulated number - x over an integral of [ ,*p = 0, which has
the same value and radial space rate on the circumference.
t Q is twice the previous column divided by square of radius.

The corresponding errors in the stresses cannot be determined easily. Asa very
rough guide to them, take the second differences coefficient at the centre of the circle
measured along a diameter with co-ordinate difference equal to the radius, that is

Body

region

TasrLe XIII.

Boundary>\

—(twice error at centre)/(radius)’. These
differences are also tabulated and are seen to
be small. '

§ 42:4. Peculiarities at the angles of 135
degrees on the Upper Boundary.—There are
three alternative ways of treating the relation
between the body and boundary equations at
the re-entrant angles. (See Table XIII.)

(@) The number (10) is determined so as
to satisfy [¥,"x = 0, and does not enter into
the boundary equations at all. (10) is derived

from (01) by means of the known value of
ox/cq, half-way between them. Also (11) is

derived from (Tl) in a similar way. This is

the procedure which has been adopted in calculating Table XII.

(b) The number (10) is determined so as to satisfy [¥,*x = 0, but it also enters
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into the boundary equations, in that the average of (11) and (10) is derived from

the average of (10) and (11) by means of the value of dx/dq at the centre of the four
points where these values are situated.

(¢) (11) is derived from (11) by means of the value of 0x/dg half-way between
them and (21) is similarly derived from (12). But (01) is derived from (10) by dx/dq
at %, L and (10) is also derived from (10) by 0x/dq at 00, where in the latter ¢ is
normal to the line joining 01 and 00. Thus (10) and (01) are both connected to (10),
and are no longer independent. It is therefore impossible to satisfy the body equations

completely. Large values of [7,% may appear at 10 and 01. In some work by this
method, now rejected, the approximation was so arranged
that these values of [,y tended to become equal and TasLe XIV.
opposite. The reason for choosing («) was that the system (c)

gave large oscillations in the stresses near the corners, ’
oscillations for which it was difficult to find any physical
reason ; (b) gave extraordinary oscillations in the shears on 0 0 / 0
the boundary, but (@) gave smooth curves of stress. /-

To confirm this choice the co-ordinate differences have been o o .

altered so that the boundary lies half-way between two
tabular numberg. The ambiguities now disappear. Thus, at
the hind toe it is found on stepping out the integral of boundary equatlons that we
have zero values, as in Tables X. and XIV., whatever be the size of the co-ordinate
difference.

X _a S _ _«a - X /
Then at the corner Rl =0 B a3 Therefore o ol

Now test Table XIL. to see whether it gives the same result.

At the hind toe %; = +388, M,,Lz%_f%; = —379, and —o. ?S = 102, which is
satisfactory. )

At the front toe a more elaborate check has been made by means of a new table
with smaller co-ordinate differences, ~ = 4. This is Table XV. It was prepared as
follows :—First, the number of digits in the values of y, near the corner, were reduced
by taking instead —y’ = —x—74+30x—182, so that x and x’ have identical second-
differences. Next, curves were plotted showing the variation of ' along lines parallel
to the co-ordinate axes. Values of y’ were read from the curves at the new points
required. These values provided the boundary numbers of Table XV., on the side of
it which is in the middle of the dam. They also provided the initial body values,
which are given in parentheses in Table XV. The boundary numbers on the
masonry-water surface were, however, not obtained by interpolation from Table XII.,
but instead from the infinitesimal integral of the boundary conditions. Each of them

2v2
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was derived from the value of y’ at the nearest point on the masonry-water surface

by adding or subtracting the value of %Xg— at that point, multiplied by the distance to

that point. The final body values of x’ were arrived at by the process which has
been compared to hand-scraping in § 3'3 above. They are justified by the very small

TABLE XV.

St function.
7:34 634 ress funection
—x T4+ 30z - 18z

h =

el
.

685 516 439 4-04f 390 4
The small figures are — Z IX'

2-68 The num.be'rs in parentheses

are the initial assumption.

3-35) (2-82)
723 494| 3:5/5 2:910| 2:78-
- 0028 —-0°039
(2:10) (1-66) (1-79)
551 345| 2-238 773 1°78H 2032\ %50 378
. ~0-048 +0:156 —0°0% i

, , (o) (123 (-89)| ' {

243 1-38] 1-020 1170 1-692| 255 378
| —0076 +0-034¢ ~0-091
' (1-00) (1-60) (2-50)
[-08 075]| 0-946 1601 2:579] 391 5-88
-0:163 401836 =06-026
(1-87) 2:87 ,
096 1-14 | 1-358 2:933] 4-36 625
1 +0:040 +0:046

170 248 36+ 51T

3-37 4-62

values of [7 'y’ belonging to them. They are given to three places of decimals merely
in order to get smooth curves of stress. The interpolated boundary values may well
be +0°02 in error, so that the third decimal has no real significance. The stresses
deduced from this table are shown in two cases in figs. 8 and 9. It is seen that the
sharp oscillations revealed in the stress by the fine differences are passed over by the
coarge differences. The relation between the stresses near the front toe is, however,
not consistent with the proportionality of the error to #°. This indicates that the
assumptions which have been made as to boundary conditions have not been quite
consistent with one another.* Nevertheless, the scheme adopted with /& = § is to be

* Or that the term'in %* in the error cannot be neglected.
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TR

_2_-?4 _—/ | -2:

2 = | Ta8LE (10) —o———o0—
h=%  TABLE (12) At
h= % TABLE (14) et

Fig. 8. Vertical stress 2z on 2 = +% for a dam 6 units high. [Table (14) should read (15).]

N /
N A
RV .

| 748LE (/0) ~o———o—

4=

fo=s  TABLE (/2) —se—tepiem

b=k TABLE(17) mtm@uetimnt=

Fig. 9. Shear 22 on z = 0 for a dam 6 units high. [Table (14) should read (15).]
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preferred to the alternatives b and ¢, for with them the inconsistency was found to be
greater. It would be interesting to rework Table XV., taking, on the masonry-
water surface, numbers stepped out by finite differences exactly as was done for the
table with - = 1. It is not possible to adjust the boundary values of Table XV. so

/
as to give by interpolation the infinitesimally correct values of y' and %« on the

masonry-water boundary, for this would necessitate four independent adjustments in
the three values nearest to either corner.
At the protuberant angles of 135 degrees the method («) adopted for the re-entrant

angles will not apply. For according to this method number (10) is not determined
by the boundary conditions (see Table XIIL.). Neither is it determined by the body
‘equation, for it is right outside the boundary. But it cannot be omitted, for it enters
into the body equation at 1, 0.

It has been derived from (10), as in the method (¢). Fortunately a protuberant
angle of 135 degrees only occurs at one point, and even if the method adopted is not
quite correct, the stresses will only be affected in the immediate neighbourhood of the
angle. This point is more than half-way up the flank.

§4'3. Conclusion.—An attempt has been made to provide tables of the stress-
function, giving by their second differences stresses sufliciently accurate to be of use
to the practical designers of dams. The evidence that this has been done is:—
(i.) The discussion of the boundary conditions in §4-1°11, §4'23°1, and §4'2°4;
(i.) The discussion as to the completeness of the approximation in §4:22'3 and
§42:3'4; (iii.) The general agreement of the stresses derived from the three sizes of
co-ordinate difference in figs. 8 and 9. In this statement about the accuracy it is
assumed that the stress is taken from the table which has the smallest co-ordinate
difference. That is, from Table XV. having & = § near the front toe ; from Table XII.
having h =4 elsewhere in the dam; from Table X. having # =1 deep down in
the bedrock.

An additional confirmation is the strong resemblance of the curves in figs. 8 and 9
to those found by Messrs. WirsoN and Gore* by stressing an india-rubber model
with a rounded angle at the front toe.

The arithmetic has been carried out by a number of people, principally Messrs.
TiLiey, H. Borcaarp, W. SaeprarD, C. H. MasTERS, and G. Ropinson, and I am
grateful to them for the care they have bestowed upon it.

§ 5. This work on the solution of physical problems by finite differences has been
carried on at intervals during three years. My thanks are due to Mr. G. A. Scrorr
for convineing me of the desirability of discovering new methods for solving physical
problems; to Mr. A. Berry, Mr. G. F. C. SeArLE, and Prof. KArL Prarson for
their encouragement and advice in the early stages; to Mr. A. CaMPBELL,
Mr. J. C. M. GagrNErT, and Mr. H. H. JErrcorT for references and the loan of books ;

* ¢Institution of Civil Enginéers,” February, 1908,
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to Prof. A. E. H. Love for several vital improvements which were introduced on
re-writing the paper, especially for the suggestion of the theory in the Appendix;
also to Prof. LARMOR, Prof. SaAmpsoN, and Dr. R. T. GrazeBrook for much valuable
criticism,

APpENDIX.—Properties of the Principal Modes of Vibration.*

In the theory of the approximation process we have assumed that—

(1) An arbitrary function f can be expanded in the form f= SA,P;, where P, is an
integral of +®'P, = \,’P, and satisfies the same boundary condition as f does.

(i1) That the N\ are real, all of one sign, and lie in a finite range.

(i) That a certain one-signed function of position I can be found such that
SIP,P, = 0, SIP;> = 1, where S denotes a summation over the body points.

It will now first be shown that if the system of difference equations satisfies certain
conditions, then the simultaneous equations

8
A

DYy =0, DY=0,... D¢, =0f . . . . . . . (1)
are equivalent to
oV oV oV
Voo, =0, % 0. . . ... .. (@),
o Oy o, (2)

where V is a one-signed homogeneous quadratic function of ...\, Next, it will be
shown that the desired properties (i), (ii), (iii) can be deduced from the existence of V.
No attempt will be made to determine whether the properties (i) and (ii) can hold
under more general circumstances when V does not exist.] However, V exists for so
wide a range of physical problems that it is well worth considering.
Conditions of Existence of 'V.—As equations (1) are to be equivalent to equations (2)
it must be possible to find a set of numbers 4, 7, ... 7, such that

Z,@“Ilz = é@ fOI‘ l =1...n . . . . . . . . (3)

is independent of the order of the differentiations,

2

And then, since
en, si 539,

(ZZED’\[;L)— GDW) . . . . (4)

%

* The dynamical analogy which is the basis of this section was pointed out to me by Prof. A. E. H.
Love. It has been introduced by PockELs in his book ‘Uber die Gleichung, A% +%u = 0." See also
RAvLEIGH, ‘Sound,’ vol. I, chap. IV.

t The boundary values in equations (1) are supposed to have been expressed in terms of the body
values by the boundary condition.

t As to the property (iii), note that by considering the coefficients of the body values in the sums
S[IP®'Py], S[IP,D'P)), it is easy to show that these sums are equal if, and only if, the reciprocal
relation (4) holds. . And if they are equal, then A2S[IP;Py] = NS [IP;P;], so that SIP;P; = 0 when A2 is
not equal to A% But the reciprocal relation (4) is necessary to the existence of V,
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for every pair kl. This is the condition that the body equations can be derived
from a single function as in (2). " The numbers 7, 7, ... 7, may be regarded as the
body values of a function of position. It will be denoted by I and called the
“unifying factor,” because it allows all the body equations to be expressed in terms
of a single function V.

For the sake of a certain transformation, which will be introduced later, V must be
quadratic and homogeneous, and therefore both body and boundary equations must
be linear and homogeneous.

Thus let

(D,lpk = ckllljl -+ Ckzlpg“l" e Cknlpn } ( )
. 5).

+euPBit et ... s )

And let the boundary equations be
Bf =f]1¢’1 +.](j"2¢’2 + ... +‘]§'nljbn . . . . . . . . (6),

where the (c¢)’s, (¢)s, and (f)s are constants, most of which will commonly be zero.
In many physical problems we have the integral ¢, given on the boundary. This
corresponds to a term f},, independent of the (y)’s, in each of the equations represented
by (6). However, it is not ¢, which we wish to expand in the form XA,P;, but the
difference (¢, —¢,) between the integral and an arbitrary function satisfying the same
boundary conditions. In ¢, —d, the f;, terms cancel. Thus we are only here concerned
with functions having boundary equations which are linear and homogeneous in the (y)’s.

Next, equation (4) leads to the following relations between the coefficients of (5)
and (6) :— ’

. = . L=
UCut+ 2 eljf;'k = ?//t()/ﬂl‘f‘?/k-z ekj.f;l ee e e e e (7)
j=1 j=1

for every pair k and /, making at most 4n (n—1) equations. Now it is customary in’
physical mathematics to treat body and boundary conditions separately. Let us
adopt the same course here and treat only the case in which (7) splits into two parts,

namely, .
Ul = Bl . . . e e ... (8
Yk (3

to be satisfied within the body regioh, and

JJ=s L=
(2 2 lelj‘f;k = 'Zlekj‘]‘;l . N B . . B . . . (9)
Jj= J=

to be satisfied on the boundary.
~In the centre of a sufficiently large table (7) reduces to (8) even in the most general
case, for there the (¢)'s and (f)'s vanish.

Stated in words, 7,c;; = 7,¢,; means that the body equations must be able to be
brought into forms such that if each pair of points in the table be taken in turn, then
the integral ¢ at the first point of the pair, enters into the body equation ©'¢ at the
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second, with the same coefficient that the value of ¢ at the second enters into the
body equation at the first. For example, if v, i, ... ¥, are spaced in order at
equal intervals along the X axis, and if © = 0°/0x’, then DYy = Y1 — 2¢n + Yrua
and (7) is satisfied when the (z)’s are simply unity. But if © = 9/dx, then
D' = p S = Y1 — Y41, SO that ¢ Is +1, while ¢; = 0, so it is impossible to find
a unifying factor.

Next, as to 4,5¢; fix = 43¢, fi. A particular condition in which these sums become
identical is if f;; = e,,0; where q; is an arbitrary number, independent of the (y)’s.

By (6) this equation implies that

Bi = a;[efin +egtayt .. e gl . . . . . . (10)

Equation (10) states that the boundary values will satisfy their part of (4) if every
boundary number is formed as follows: Take each body-point. Multiply the value
of ¢ there by the unifying factor and by the coefficient of the said boundary number
in D¢ at this point. Sum this product for all body points and multiply the total by a
number independent of the body values. This is not the most general way of
satisfying (9), but it is a common one in physical problems. Thus, for example, if
82
o

occurrence is to have ¢, given, and therefore ¢,,—¢, = 0. This corresponds to a; = 0.

2
the equation to be solved is <—§— >qS = 0, a boundary condition of frequent

~ Another common condition is 0 = %_iﬁ = M’é’%@, where on is an element of the

normal to the boundary. Then a boundary number will either be equal to a body-
number or to a weighted mean of two neighbouring body-numbers; in either case
a1 = e,y +eyly+ ... +€,4,, in which all but one or two of the (¢)'s will vanish.

Lastly, it will be necessary in what follows that V should be of one sign for all
values of i, Y, ... ¥5,. This will be so if 9*V/oy;? is of the same sign for every i
Whence, by (3), (5), and (6), w{cu+3e,fxt must be of the same sign for
everyk . . . . B ¢ 25 )

As before, we will treat only the case in Whlch the boundary and body equations
satisfy this separately, so that every ucy, and every zkEe,cj Jfir have all the same sign.

For simplicity we will take V as positive . . . .o (12).
Then ¢, has the same sign as ¢y. Further, as the sign of the opexator @' does not
affect the solution of the equations D = 0...D'ys, = 0 we may alter it arbitrarily, and
we will for simplicity suppose it chosen at each point so as to make ¢y, positive . (13).

The 1,...2, will then also be positive . . . oo Ce e e (14).

For convenience, a table is added giving the formb of I and V for some common
forms of ®'. These were taken by analogy from infinitesimals, and afterwards
verified by trial. Thus for ® = V* we have V =  [[[[V¢ ] dr, where V is the vector
operator Nabla and dr an element of volume. On expressing V in orthogonal curvilinear
co-ordinates ¢1¢,q; and varying ¢, it is found that 6V = [[[ 6¢ . V2<,{> I.dr + a surface

VOL. CCX.—A, 2 z
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integral, where the unifying factor I is equal to minus the ratio of the volume of the
elementary co-ordinate block to the product dg,dg,dg,* :

& denotes a summation for every difference which involves a body-number dlrectly
(that is not by way of boundary equations (6)).

In the following table the co-ordinate difference is supposed constant for each
co-ordinate separately :—

' with sign to make | Unifying 2
cu plus factor I. V. Ao
I I A %9¢>> < ¢> '§q§>2] 4 4 4
< SRR > Unity &[ \5w) +© By +6<”8z 52 T8 T Ee

[

®
——

=
S
&

<‘82 1.8 % 1%32>

g trbte e T esE)| 7 { <
S ) N { vsqs>}
< e +’&r‘> Unity © <%9'r

2
I . 16 <%s¢ %92(,5)

4 4\?
Bt 7y ‘%Sy Unity Ba® Sy’ <°8_902 * %?)

Note that the averager p occurs in © but not in V. Having now set out the

conditions of existence of V in a form in which they can easily be applied to test any
operator © given with unifying factor and boundary conditions, let us pass on to
deduce the properties of the principal modes of vibration from the existence of V.
Let :
OT = s +igh®+ il . . . . . . . . (15),
then
T/, =ady . . . . . . . . .. (16),

and by (14) T is essentially positive.
Now V and T being real quadratic forms in the same variables, one of which, T, is

* Simply putting S for ¢ in the infinitesimal V does not give the finite-difference V except in special
cases.—dApril, 1910, ‘
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definite,* may be transformedt to real sums of squares of new variables A which are
real linear functions of ...,

Thus oT = A2+A S+ +A2 . . . . L L L (17),

2V = MAPHNMAS+ L HNAE L L o oL L (18),

M2\ being the values of A which cause the vanishing of the determinant whose
(k, l)th element is

alpkalpl(v NT). .. (19).

But by (3) and (16) this element is

<0 v 2
. é:ll_z(SD Y — Ny,

And the vanishing of the determinant is, therefore, the condition that the n body
equations

D (s P oY) = N i oo W) . o . . . . (20)

should have an integral other than zero. The integrals thus defined as to their body
values by (20) have already been denoted by P;, P, ... P,.

The determinant being of the nth degree in A* vanishes for n values of A%  Since
one of the forms, T, is definite these n roots are all real (KRONECKER, loc. ¢it.), and
since both T and V are positive \,...\,2 are all positive . . .o (21).

Now let the coeflicients in the transformation of T and V be the ( p) s defined by

A = '411111])114‘7:2\!'2]012'[‘ ---'f:n\/ln_pxn ]
A, = i1¢1]021+3.21/12]?22+ '--Z.n\l'npzn o (22).

A, = 7:11!‘1 Pn +7:2¢‘2}9n2+ .. anllnpnn J
Then differentiating (17) and (18) by y, and using (22)

llll ’L a\l; A1])11+Agpgl+ cee +>A-npnl . . . . . . (23),
D= 12X = Ayt MIA :

ll’z 7 lll 1 1pu+ 9 2]321+...)\n Anpnl ce e e (24),
for {=1,2...n. Now if we limit the hitherto arbitrary (¢)’s by making all the
(A)’s vanish except A;, then .

Y = A;ps D= NApp - ... (25), (26),

* “Definite ” here means: one-signed and vanishing only when i, s, ... ¥, all vanish,
T KRONECKER, quoted by BroMwicH, ‘Cambridge Tracts in Mathematics,” No. 3, §26; also by
WEBSTER, ‘ Dynamics,” Appendix V.

2z 2
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356 MR. L. F. RICHARDSON: APPROXIMATE ARITHMETICAL SOLUTION

so that under this limitation +®"y; = N  Now if by is defined as related to p;; in
the same way as 3, is related to iy, that is by equation (6) then operating on both
sides of (25) with ©/, we have ®'Yy = A, D'p;.  Substituting in (26)

Ql])]l = )\jzpﬂ . . . . . . . . . (27).

Thus it appears that the (p)s and (b)’s, as defined by (22) and by (6), are the
body and boundary values of the integrals P, ... P,. .

Equation (23) is therefore equivalent to the statement that an arbitrary function
J may be expanded in the series

F=AP+AP+. AP, . . . . . . . . (28)

as to its body points, and as f and the (P)'s must all satisfy the same boundary
condition the same expansion holds good on the boundary also. Analogous to this in
infinitesimals, and for a special form of ¥, are the expansions of arbitrary functions
in series of sines, Bessel functions, spherical harmonics, and other integrals of
(V*+E) ¢ = 0.

Equations (22) mean that to determine the coefficient of any principal mode of
vibration in the expansion of an arbitrary function we must multiply the arbitrary
function by this mode of vibration and by the unifying factor, and add up the products
at the body points only. This is analogous to the well-known Fourier method of
determining coeflicients.

Squaring equation (23), multiplying by 4, and summing over the body points and
using (15) and (17), we find

l=n . l=n .

Ef %102kz =1, 12 uPupn = 0.

B B (29) and (30).
which mean the same as  SIP,? =1, SIP,P, = 0.

The above proof holds good even if any of A,... \,” are equal to one another.
This completes the properties of the (P)’s which we require.* It remains to consider
some approximations to A’...\,%

Since by (17) and (18)

Y _ )\12A12+)\.22A.22+ .o .)\nzAnz (31)

T AP+AR+.. A7 I ’

* The transformation of ()s to (A)s resembles an orthogonal transformation of co-ordinates in that

there are two other relations similar to (29) and (30). These are found by squaring (22) and using (17)

and (15). They are ikj Enpjkz ~1 and =2ﬂ:pj1_pj2 = 0. The first means that the sum of the squares of the
j=1 j=1

values of the # harmonics at the kth body point is 1/, The second means that if we take each principal
mode of vibration, form the product of its values at two fixed body points, and then add up these products
for all the modes, their sum is zero.—April, 1910.
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it follows that when f'= P, then V/T =\ and when f differs slightly from P, then
V/T will differ from N\ by a small quantity of the second order (RavrricH, ¢ Theory
of Sound,” §88). In §3°2'3 a guess is made at P,, and N, is then calculated roughly
as V/T.

The special values A\/?’...\,? for any region are included between the greatest and
least of the \* pertaining to any region, which includes the former region when the
boundary values of both regions vanish. For let P,, the integral of (®'+\?) P, =0
for the smaller region, be set round about with noughts until a larger boundary is
reached. The conditions for the existence of a function V will then be satisfied for
the larger region. Let quantities belonging to the larger region be distinguished by
dashes. Then by (28) P, may be expanded in the form

P, = 2B,P’;, where the (B)'s are constants.

Now by (31) M? = V/T, when the body values have the values given by ¢ = AP,
Also, by (15), T" = T since the added squares are zero. Also, by (3), D'y, is equal
to both 9V /oy, and oV’[dy, so that V and V’ can only differ by terms independent of
Yn, s, .- Y. But there are no other variables in V. Therefore V' = V and M2 = V/[T".
Now, expanding V' and T by (17) and (18),

A = MN2GE24HN G+ ...+ x./2G,.2 )
G2+ Gl +...+G?

And therefore N lies between the greatest and least of the N2 If, however, the
boundary values do not vanish then oV’'[dyy, = +4,D'y; when the (B)’s are regarded as
independent of the (y)'s during the differentiation, whereas 9V/dy; = the same
quantity when V is expressed as a function of the (y)’s entirely, and a more detailed
examination shows that \;* need not lie between the greatest and least values of A\
for an enclosing boundary with zero boundary values. However, N, is necessarily
finite, for it is the root of a rational integral function with finite coeflicients.
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